Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 3, Pages 433–442
DOI: https://doi.org/10.4213/mzm13464
(Mi mzm13464)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the Dimension of the Space of Dark States in the Tavis–Cummings Model

Yu. I. Ozhigovab

a Lomonosov Moscow State University
b Insitute of Physics and Technology, Institution of Russian Academy of Sciences, Moscow
Full-text PDF (479 kB) Citations (2)
References:
Abstract: The space of minimal energy of a qubit system is the dark subspace of quantum states of a system of two-level atoms in the finite-dimensional Tavis–Cummings (TC) model of quantum electrodynamics. The two-level atoms in the dark state do not interact with the electromagnetic field, which makes this subspace free from decoherence. An exact expression is obtained for the dimension of the dark subspace in the exact TC model and for the rotating wave approximation (RWA).
Keywords: Tavis–Cummings model, dark states.
Received: 23.05.2021
Revised: 15.10.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 3, Pages 433–440
DOI: https://doi.org/10.1134/S0001434622030117
Bibliographic databases:
Document Type: Article
UDC: 539.120
Language: Russian
Citation: Yu. I. Ozhigov, “On the Dimension of the Space of Dark States in the Tavis–Cummings Model”, Mat. Zametki, 111:3 (2022), 433–442; Math. Notes, 111:3 (2022), 433–440
Citation in format AMSBIB
\Bibitem{Ozh22}
\by Yu.~I.~Ozhigov
\paper On the Dimension of the Space of Dark States in the Tavis--Cummings Model
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 3
\pages 433--442
\mathnet{http://mi.mathnet.ru/mzm13464}
\crossref{https://doi.org/10.4213/mzm13464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461273}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 3
\pages 433--440
\crossref{https://doi.org/10.1134/S0001434622030117}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128916843}
Linking options:
  • https://www.mathnet.ru/eng/mzm13464
  • https://doi.org/10.4213/mzm13464
  • https://www.mathnet.ru/eng/mzm/v111/i3/p433
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :29
    References:56
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024