Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 4, Pages 592–605
DOI: https://doi.org/10.4213/mzm13450
(Mi mzm13450)
 

This article is cited in 1 scientific paper (total in 1 paper)

Rogosinsky–Bernstein Polynomial Method of Summation of Trigonometric Fourier Series

R. M. Trigub

Donetsk National University
Full-text PDF (510 kB) Citations (1)
References:
Abstract: General Rogosinsky–Bernstein linear polynomial means $R_n(f)$ of Fourier series are introduced and three convergence criteria as $n\to\infty$ are obtained: for convergence in the space $C$ of continuous periodic functions and for convergence almost everywhere with two guaranteed sets (Lebesgue points and $d$-points). For smooth functions, the rate of convergence in norm of $R_n(f)$, as well as of their interpolation analogues, is also studied. For approximation of functions in $C^r$, the asymptotics is found along with the rate of decrease of the remainder term.
Keywords: series and Fourier transforms, Hardy's inequality, Riesz means, Lebesgue points ($l$-points) and $d$-points, modulus of smoothness, linearized modulus of smoothness, Jackson's theorem, Vallée-Poussin polynomial, conjugate function, entire functions of exponential type, comparison principle, Marcinkiewicz's inequality and discretization.
Received: 04.01.2021
Revised: 09.01.2022
English version:
Mathematical Notes, 2022, Volume 111, Issue 4, Pages 604–615
DOI: https://doi.org/10.1134/S0001434622030294
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: R. M. Trigub, “Rogosinsky–Bernstein Polynomial Method of Summation of Trigonometric Fourier Series”, Mat. Zametki, 111:4 (2022), 592–605; Math. Notes, 111:4 (2022), 604–615
Citation in format AMSBIB
\Bibitem{Tri22}
\by R.~M.~Trigub
\paper Rogosinsky--Bernstein Polynomial Method of Summation of Trigonometric Fourier Series
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 4
\pages 592--605
\mathnet{http://mi.mathnet.ru/mzm13450}
\crossref{https://doi.org/10.4213/mzm13450}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 4
\pages 604--615
\crossref{https://doi.org/10.1134/S0001434622030294}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85144786563}
Linking options:
  • https://www.mathnet.ru/eng/mzm13450
  • https://doi.org/10.4213/mzm13450
  • https://www.mathnet.ru/eng/mzm/v111/i4/p592
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :58
    References:69
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024