Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 2, Pages 263–268
DOI: https://doi.org/10.4213/mzm13428
(Mi mzm13428)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation

A. Kh. Khanmamedovabc, A. F. Mamedovad

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
b Baku Engineering University
c Azerbaijan University
d Azerbaijan State Economic University
Full-text PDF (400 kB) Citations (3)
References:
Abstract: The perturbed Hill equation in which the perturbed potential has finite first moment is considered. An integral equation for the kernel of a triangular representation of the Jost solution is studied. A sharper estimate of the derivative of the kernel is obtained.
Keywords: Hill equation, Jost solution, triangular representation, method of the Riemann function.
Received: 21.01.2022
Revised: 19.03.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 2, Pages 281–285
DOI: https://doi.org/10.1134/S0001434622070306
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. Kh. Khanmamedov, A. F. Mamedova, “A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation”, Mat. Zametki, 112:2 (2022), 263–268; Math. Notes, 112:2 (2022), 281–285
Citation in format AMSBIB
\Bibitem{KhaMam22}
\by A.~Kh.~Khanmamedov, A.~F.~Mamedova
\paper A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 2
\pages 263--268
\mathnet{http://mi.mathnet.ru/mzm13428}
\crossref{https://doi.org/10.4213/mzm13428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461348}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 2
\pages 281--285
\crossref{https://doi.org/10.1134/S0001434622070306}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85136701688}
Linking options:
  • https://www.mathnet.ru/eng/mzm13428
  • https://doi.org/10.4213/mzm13428
  • https://www.mathnet.ru/eng/mzm/v112/i2/p263
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024