Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 3, Pages 412–425
DOI: https://doi.org/10.4213/mzm13406
(Mi mzm13406)
 

This article is cited in 1 scientific paper (total in 1 paper)

Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets

I. D. Kan, V. A. Odnorob

Moscow Aviation Institute (National Research University)
Full-text PDF (558 kB) Citations (1)
References:
Abstract: We consider the linear inhomogeneous congruence
$$ ax-by\equiv t\,(\operatorname{mod}q) $$
and prove an upper estimate for the number of its solutions. Here $a$, $b$, $t$, and $q$ are given natural numbers, $x$ and $y$ are coprime variables from a given interval such that the number $x/y$ expands in a continued fraction with partial quotients on a finite alphabet $\mathbf{A}\subseteq\mathbb{N}$. For $t=0$, a similar problem has been solved earlier by I. D. Kan and, for $\mathbf{A}=\mathbb{N}$, by N. M. Korobov. In addition, in one of the recent statements of the problem, an additional constraint in the form of a linear inequality was also imposed on the fraction $x/y$.
Keywords: linear inhomogeneous congruence, linear homogeneous congruence, continued fraction, finite alphabet.
Received: 05.01.2022
Revised: 21.04.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 3, Pages 424–435
DOI: https://doi.org/10.1134/S0001434622090115
Bibliographic databases:
Document Type: Article
UDC: 511.321+511.31
PACS: 511.321 + 511.31
Language: Russian
Citation: I. D. Kan, V. A. Odnorob, “Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets”, Mat. Zametki, 112:3 (2022), 412–425; Math. Notes, 112:3 (2022), 424–435
Citation in format AMSBIB
\Bibitem{KanOdn22}
\by I.~D.~Kan, V.~A.~Odnorob
\paper Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 3
\pages 412--425
\mathnet{http://mi.mathnet.ru/mzm13406}
\crossref{https://doi.org/10.4213/mzm13406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538777}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 3
\pages 424--435
\crossref{https://doi.org/10.1134/S0001434622090115}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140643536}
Linking options:
  • https://www.mathnet.ru/eng/mzm13406
  • https://doi.org/10.4213/mzm13406
  • https://www.mathnet.ru/eng/mzm/v112/i3/p412
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:153
    Full-text PDF :18
    References:39
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024