Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 4, paper published in the English version journal (Mi mzm13403)  

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

Green's Function and Existence Results for Solutions of Semipositone Nonlinear Euler–Bernoulli Beam Equations with Neumann Boundary Conditions

W. Jingjing, G. Chenghua, X. He

College of Mathematics and Statistics, Northwest Normal University
Citations (1)
Abstract: In this paper, we are concerned with the existence and multiplicity of positive solutions of the boundary value problem for the fourth-order semipositone nonlinear Euler–Bernoulli beam equation
$$ \begin{cases} y^{(4)}(x)+(\eta+\zeta)y''(x)+\eta\zeta y(x)=\lambda f(x,y(x)),& x\in[0,1],\\ y'(0)=y'(1)=y'''(0)=y'''(1)=0,& \end{cases} $$
where $\eta$ and $\zeta$ are constants, $\lambda>0$ is a parameter, and $f\in C([0,1]\times \mathbb{R}^+,\mathbb{R})$ is a function satisfying $f(x,y)\geq-\mathcal{X}$ for some positive constant $\mathcal{X}$; here $\mathbb{R}^+:=[0,\infty)$. The paper is concentrated on applications of the Green's function of the above problem to the derivation of the existence and multiplicity results for the positive solutions. One example is also given to demonstrate the results.
Keywords: semipositone, Euler–Bernoulli beam equations, Green's function, positive solutions, Neumann boundary value problem.
Funding agency Grant number
National Natural Science Foundation of China 11961060
Graduate Research Support Project of Northwest Normal University 2021KYZZ01032
This work was supported by the Program of the “National Natural Science Foundation of China (no. 11961060)” and “Graduate Research Support Project of Northwest Normal University (no. 2021KYZZ01032).”
Received: 30.12.2021
English version:
Mathematical Notes, 2023, Volume 113, Issue 4, Pages 574–583
DOI: https://doi.org/10.1134/S0001434623030288
Bibliographic databases:
Document Type: Article
MSC: 34B15; 34B18; 34B27
Language: English
Citation: W. Jingjing, G. Chenghua, X. He, “Green's Function and Existence Results for Solutions of Semipositone Nonlinear Euler–Bernoulli Beam Equations with Neumann Boundary Conditions”, Math. Notes, 113:4 (2023), 574–583
Citation in format AMSBIB
\Bibitem{JinCheHe23}
\by W.~Jingjing, G.~Chenghua, X.~He
\paper Green's Function and Existence Results for Solutions of Semipositone Nonlinear Euler--Bernoulli Beam Equations with Neumann Boundary Conditions
\jour Math. Notes
\yr 2023
\vol 113
\issue 4
\pages 574--583
\mathnet{http://mi.mathnet.ru/mzm13403}
\crossref{https://doi.org/10.1134/S0001434623030288}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4578305}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160217252}
Linking options:
  • https://www.mathnet.ru/eng/mzm13403
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:71
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024