Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 6, Pages 803–818
DOI: https://doi.org/10.4213/mzm13383
(Mi mzm13383)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Approximation Properties of Fourier Series in Jacobi Polynomials $P_n^{\alpha-r,-r}(x)$ Orthogonal in the Sense of Sobolev

R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
Full-text PDF (484 kB) Citations (1)
References:
Abstract: The article deals with the problem of the deviation from a function $f$ belonging to the space $W^r$ of partial sums of Fourier series with respect to the system of polynomials $\{\varphi_n(x)\}_{n=0}^\infty$, orthogonal with respect to an inner product of Sobolev type. Here $\varphi_n(x)=(x+1)^n/n!$ for $0\le n\le r-1$ and
$$ \varphi_n(x)=\frac{2^r}{(n+\alpha-r)^{[r]} \sqrt{h_{n-r}^{\alpha,0}}}\,P_n^{\alpha-r,-r}(x)\qquad\text{for}\quad n\ge r, $$
where $P_n^{\alpha-r,-r}(x)$ is the Jacobi polynomial of degree $n$. The main attention is paid to obtaining an upper bound for a Lebesgue-type function of partial sums of the Fourier series with respect to the system $\{\varphi_n(x)\}_{n=0}^\infty$.
Keywords: Sobolev-type inner product, Jacobi polynomials, Fourier series, approximation properties.
Received: 02.12.2021
Revised: 14.01.2022
English version:
Mathematical Notes, 2022, Volume 111, Issue 6, Pages 827–840
DOI: https://doi.org/10.1134/S0001434622050170
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: R. M. Gadzhimirzaev, “On Approximation Properties of Fourier Series in Jacobi Polynomials $P_n^{\alpha-r,-r}(x)$ Orthogonal in the Sense of Sobolev”, Mat. Zametki, 111:6 (2022), 803–818; Math. Notes, 111:6 (2022), 827–840
Citation in format AMSBIB
\Bibitem{Gad22}
\by R.~M.~Gadzhimirzaev
\paper On Approximation Properties of Fourier Series in Jacobi Polynomials $P_n^{\alpha-r,-r}(x)$ Orthogonal in the Sense of Sobolev
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 6
\pages 803--818
\mathnet{http://mi.mathnet.ru/mzm13383}
\crossref{https://doi.org/10.4213/mzm13383}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461309}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 6
\pages 827--840
\crossref{https://doi.org/10.1134/S0001434622050170}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132873908}
Linking options:
  • https://www.mathnet.ru/eng/mzm13383
  • https://doi.org/10.4213/mzm13383
  • https://www.mathnet.ru/eng/mzm/v111/i6/p803
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024