Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, Pages 721–738
DOI: https://doi.org/10.4213/mzm13328
(Mi mzm13328)
 

On Lie Algebras Defined by Tangent Directions to Homogeneous Projective Varieties

A. O. Zavadskii

Lomonosov Moscow State University
References:
Abstract: Let $X$ be an embedded projective variety. The Lie algebra $\mathfrak L$ defined by the tangent directions to $X$ at smooth points is an interesting algebraic invariant of $X$. In some cases, this algebra is isomorphic to the symbol algebra of a filtered system of distributions on a Fano manifold, which plays an important role in the theory of these manifolds. In addition, algebras defined by tangent directions are interesting on their own right. In this paper, we study the Lie algebra $\mathfrak L$ corresponding to a variety $X$ that is the projectivization of the orbit of the lowest weight vector of an irreducible representation of a complex semisimple Lie group. We describe these algebras in terms of generators and relations. In many cases, we can describe their structure completely.
Keywords: homogeneous varieties, graded Lie algebras, Dynkin diagrams.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
The paper was published with the financial support of the Russian Ministry of Education and Science as a part of the implementation of the program of the Moscow Center for Fundamental and Applied Mathematics by the agreement no. 075-15-2022-284.
Received: 28.10.2021
Revised: 04.01.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 1029–1044
DOI: https://doi.org/10.1134/S0001434623110342
Bibliographic databases:
Document Type: Article
UDC: 512.816+512.554
MSC: 17B70, 57S20
Language: Russian
Citation: A. O. Zavadskii, “On Lie Algebras Defined by Tangent Directions to Homogeneous Projective Varieties”, Mat. Zametki, 114:5 (2023), 721–738; Math. Notes, 114:5 (2023), 1029–1044
Citation in format AMSBIB
\Bibitem{Zav23}
\by A.~O.~Zavadskii
\paper On Lie Algebras Defined by Tangent Directions to Homogeneous Projective Varieties
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 5
\pages 721--738
\mathnet{http://mi.mathnet.ru/mzm13328}
\crossref{https://doi.org/10.4213/mzm13328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4716481}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 1029--1044
\crossref{https://doi.org/10.1134/S0001434623110342}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187695469}
Linking options:
  • https://www.mathnet.ru/eng/mzm13328
  • https://doi.org/10.4213/mzm13328
  • https://www.mathnet.ru/eng/mzm/v114/i5/p721
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :5
    Russian version HTML:18
    References:18
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024