Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 4, Pages 506–518
DOI: https://doi.org/10.4213/mzm13301
(Mi mzm13301)
 

Characterizations of $\sigma$-Solvable Finite Groups

W. Guoa, Ch. Wana, I. N. Safonovab, A. N. Skibac

a School of Science, Hainan University
b Belarusian State University, Minsk
c Gomel State University named after Francisk Skorina
References:
Abstract: All the groups considered in this paper are finite, and $G$ always denotes a finite group; $\sigma$ is a partition of the set $\mathbb{P}$ of all primes, i.e., $\sigma=\{\sigma_{i} \mid i \in I\}$, where $\mathbb{P}=\bigcup_{i \in I} \sigma_{i}$ and $\sigma_{i} \cap \sigma_{j}=\varnothing$ for all $i \ne j$. A group $G$ is said to be $\sigma$-primary if $G$ is a $\sigma_{i}$-group for some $i=i(G)$, and $\sigma$-solvable if every chief factor of $G$ is $\sigma$-primary. A set of subgroups $\mathcal{H}$ of a group $G$ is called a complete Hall $\sigma$-set of $G$ if every element $\ne 1$ of the set $\mathcal{H}$ is a Hall $\sigma_{i}$-subgroup $G$ for some $i$, and $\mathcal{H}$ contains exactly one Hall $\sigma_{i}$-subgroup of the group $G$ for all $i$ such that $\sigma_{i}\cap \pi(G)\ne \varnothing$. A subgroup $A$ of a group $G$ is said to be $K$-$\mathfrak{S}_{\sigma}$-subnormal in $G$ if $G$ contains a series of subgroups $A=A_{0} \le A_{1} \le\cdots\le A_{t}=G$ such that either $A_{i-1} \trianglelefteq A_{i}$ or the group $A_{i}/(A_{i-1})_{A_{i}}$ is $\sigma$-solvable for all $i=1,\dots,t$. We say that a subgroup $A$ of a group $G$ is weakly $K$-$\mathfrak{S}_{\sigma}$-subnormal in $G$ if $G$ contains $K$-$\mathfrak{S}_{\sigma}$-subnormal subgroups $S$ and $T$ such that $G=AT$ and $A \cap T \le S \le A$. In the present paper, we study conditions under which a group is $\sigma$-solvable. In particular, we prove that a group $G$ is $\sigma$-solvable if and only if at least one of the following two conditions is satisfied: (i) $G$ has a complete Hall $\sigma$-set $\mathcal H$ all of whose elements are weakly $K$-$\mathfrak{S}_{\sigma}$-subnormal in $G$; (ii) in every maximal chain of subgroups $\cdots < M_{3} < M_{2} < M_{1} < M_{0}=G$ of the groups $G$, at least one of the subgroups $M_{3}$$M_{2}$, or $M_{1}$ is weakly $K$-$\mathfrak{S}_{\sigma}$-subnormal in $G$.
Keywords: finite group, groups of equal order, $\sigma$-solvable group, $K$-$\mathfrak{S}_{\sigma}$-subnormal subgroup, weakly $K$-$\mathfrak{S}_{\sigma}$-subnormal subgroup.
Funding agency Grant number
National Natural Science Foundation of China 12171126
12101165
Ministry of Education of the Republic of Belarus 20211328
Belarusian Republican Foundation for Fundamental Research Ф20Р-291
The research was supported by grants of the National Natural Science Foundation of China (grants no. 12171126 and 12101165). The work of the third author was supported by the Ministry of Education of the Republic of Belarus (under the project 20211328). The work the fourth author was supported by the Belarusian Republican Foundation for Fundamental Research (grant F20R-291).
Received: 21.09.2021
Revised: 11.12.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 4, Pages 534–543
DOI: https://doi.org/10.1134/S000143462203021X
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: W. Guo, Ch. Wan, I. N. Safonova, A. N. Skiba, “Characterizations of $\sigma$-Solvable Finite Groups”, Mat. Zametki, 111:4 (2022), 506–518; Math. Notes, 111:4 (2022), 534–543
Citation in format AMSBIB
\Bibitem{GuoWanSaf22}
\by W. Guo, Ch.~Wan, I.~N.~Safonova, A.~N.~Skiba
\paper Characterizations of $\sigma$-Solvable Finite Groups
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 4
\pages 506--518
\mathnet{http://mi.mathnet.ru/mzm13301}
\crossref{https://doi.org/10.4213/mzm13301}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 4
\pages 534--543
\crossref{https://doi.org/10.1134/S000143462203021X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85138085906}
Linking options:
  • https://www.mathnet.ru/eng/mzm13301
  • https://doi.org/10.4213/mzm13301
  • https://www.mathnet.ru/eng/mzm/v111/i4/p506
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024