Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 2, Pages 211–218
DOI: https://doi.org/10.4213/mzm13300
(Mi mzm13300)
 

This article is cited in 1 scientific paper (total in 1 paper)

A Note on Generalized Contraction Theorems

E. S. Zhukovskiyab

a Tambov State University named after G.R. Derzhavin
b V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
Full-text PDF (464 kB) Citations (1)
References:
Abstract: This work is devoted to estimates of the fixed point of generalized contracting (in the sense of Browder's and Krasnoselskii's definitions) operators $ G $ in a complete metric space $ (X, \rho)$. Upper and lower bounds for the distance $ \rho (x_0, \xi) $ between an arbitrary $ x_0 \in X $ and a fixed point $ \xi $ of the operator $ G $ are obtained. In the case of an “ordinary” $ q $-contraction ($ 0 \le q <1 $), the upper bound obtained in this work yields the inequality
$$ \rho (x_0, \xi) \le{(1-q)} ^{-1}{\rho (x_0, G (x_0))} $$
from Banach's theorem, while the lower bound yields the inequality
$$ \rho (x_0, \xi) \ge{(1 + q)} ^{-1}{\rho (x_0, G (x_0))}. $$
Also, for a generalized contraction operator, we obtain estimates of the distance $ \rho (x_0, x_i) $ from $ x_0 $ to the $ i $th the iteration $ x_i $ (defined by the recurrence relation $ x_j = G (x_{j-1})$, $ j = 1, \dots, i $). Using the obtained estimates, we prove a fixed-point theorem for an operator satisfying a local generalized contraction condition.
Keywords: fixed point, generalized contraction operator, iterations, metric.
Funding agency Grant number
Russian Science Foundation 20-11-20131
This work was supported by the Russian Science Foundation under grant 20-11-20131.
Received: 21.09.2021
Revised: 26.10.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 2, Pages 211–216
DOI: https://doi.org/10.1134/S0001434622010242
Bibliographic databases:
Document Type: Article
UDC: 517.988.63
Language: Russian
Citation: E. S. Zhukovskiy, “A Note on Generalized Contraction Theorems”, Mat. Zametki, 111:2 (2022), 211–218; Math. Notes, 111:2 (2022), 211–216
Citation in format AMSBIB
\Bibitem{Zhu22}
\by E.~S.~Zhukovskiy
\paper A Note on Generalized Contraction Theorems
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 2
\pages 211--218
\mathnet{http://mi.mathnet.ru/mzm13300}
\crossref{https://doi.org/10.4213/mzm13300}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461251}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 2
\pages 211--216
\crossref{https://doi.org/10.1134/S0001434622010242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760397500024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140621151}
Linking options:
  • https://www.mathnet.ru/eng/mzm13300
  • https://doi.org/10.4213/mzm13300
  • https://www.mathnet.ru/eng/mzm/v111/i2/p211
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :46
    References:53
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024