Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 3, Pages 411–421
DOI: https://doi.org/10.4213/mzm13284
(Mi mzm13284)
 

This article is cited in 4 scientific papers (total in 4 papers)

On Descriptive Characterizations of an Integral Recovering a Function from Its $L^r$-Derivative

P. Musiala, V. A. Skvortsovb, F. Tulonec

a Chicago State University
b Moscow Center for Fundamental and Applied Mathematics
c Università degli Studi di Palermo
Full-text PDF (537 kB) Citations (4)
References:
Abstract: The notion of $L^r$-variational measure generated by a function $F\in L^r[a,b]$ is introduced and, in terms of absolute continuity of this measure, a descriptive characterization of the $H\!K_r$-integral recovering a function from its $L^r$-derivative is given. It is shown that the class of functions generating absolutely continuous $L^r$-variational measure coincides with the class of $ACG_{r}$-functions which was introduced earlier, and that both classes coincide with the class of the indefinite $H\!K_{r}$-integrals under the assumption of $L^r$-differentiability almost everywhere of the functions consisting these classes.
Keywords: $L^r$-derivative, Henstock–Kurzweil-type integral, $L^r$-variational measure, absolutely continuous measure, generalized absolute continuity of a function.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00584
This work was supported by the Russian Foundation for Basic Research under grant 20-01-00584.
Received: 07.09.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 3, Pages 414–422
DOI: https://doi.org/10.1134/S0001434622030099
Bibliographic databases:
Document Type: Article
UDC: 517.518.126
Language: Russian
Citation: P. Musial, V. A. Skvortsov, F. Tulone, “On Descriptive Characterizations of an Integral Recovering a Function from Its $L^r$-Derivative”, Mat. Zametki, 111:3 (2022), 411–421; Math. Notes, 111:3 (2022), 414–422
Citation in format AMSBIB
\Bibitem{MusSkvTul22}
\by P.~Musial, V.~A.~Skvortsov, F.~Tulone
\paper On Descriptive Characterizations of an Integral Recovering a Function from Its $L^r$-Derivative
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 3
\pages 411--421
\mathnet{http://mi.mathnet.ru/mzm13284}
\crossref{https://doi.org/10.4213/mzm13284}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461271}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 3
\pages 414--422
\crossref{https://doi.org/10.1134/S0001434622030099}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128901052}
Linking options:
  • https://www.mathnet.ru/eng/mzm13284
  • https://doi.org/10.4213/mzm13284
  • https://www.mathnet.ru/eng/mzm/v111/i3/p411
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :19
    References:41
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024