Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 3, Pages 453–473
DOI: https://doi.org/10.4213/mzm13232
(Mi mzm13232)
 

Zinger Functions and Yukawa Couplings

Kh. M. Shokri

Shahid Beheshti University
References:
Abstract: For the domain $\mathcal{P}=1+x\mathbb{Q}(w)_0[[x]]$, where $\mathbb{Q}(w)_0=\mathbb{Q}(w)\cap\mathbb{Q}[[w]]$, and a function $f(w,x)\in\mathcal{P}$, we consider the Zinger operator
$$ \mathbf{M} f(w,x)=\biggl(1+\frac xw\frac{\partial}{\partial x}\biggr)\frac{f(w,x)}{f(0,x)} $$
and define $I_p(x)=\mathbf{M}^p(f(w,x))\mid_{w=0}$. In this article, we study a class of periodic functions under the iterations of $\mathbf{M}$ and show that $I_p$ have interesting properties. A typical element of this class is constructed from the holomorphic solution of a differential equation with maximal unipotent monodromy. For this solution we define a kind of deformation (Zinger deformation) as a member of $\mathcal{P}$. This deformation is a natural generalization of what Zinger did for the hypergeometric function
$$ \mathcal{F}(x)=\sum_{d=0}^\infty\biggl(\frac{(nd)!}{(d!)^n}\biggr)x^d. $$
Finally for a family of Calabi–Yau manifolds, we consider the associated Picard–Fuchs equation. Then under the mirror symmetry hypothesis, we show that the Yukawa couplings can be interpreted as these new functions $I_p$.
Keywords: Zinger functions, Yukawa couplings, maximal unipotent monodromy, Calabi–Yau equations, mirror symmetry.
Received: 21.07.2021
Revised: 06.03.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 3, Pages 458–475
DOI: https://doi.org/10.1134/S0001434622090140
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: Kh. M. Shokri, “Zinger Functions and Yukawa Couplings”, Mat. Zametki, 112:3 (2022), 453–473; Math. Notes, 112:3 (2022), 458–475
Citation in format AMSBIB
\Bibitem{Sho22}
\by Kh.~M.~Shokri
\paper Zinger Functions and Yukawa Couplings
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 3
\pages 453--473
\mathnet{http://mi.mathnet.ru/mzm13232}
\crossref{https://doi.org/10.4213/mzm13232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538781}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 3
\pages 458--475
\crossref{https://doi.org/10.1134/S0001434622090140}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140614094}
Linking options:
  • https://www.mathnet.ru/eng/mzm13232
  • https://doi.org/10.4213/mzm13232
  • https://www.mathnet.ru/eng/mzm/v112/i3/p453
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :23
    References:41
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024