Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 110, Issue 4, Pages 498–506
DOI: https://doi.org/10.4213/mzm13168
(Mi mzm13168)
 

This article is cited in 1 scientific paper (total in 1 paper)

Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators

T. A. Garmanova, I. A. Sheipak

Lomonosov Moscow State University
Full-text PDF (498 kB) Citations (1)
References:
Abstract: In this paper, the properties of the primitives of Legendre polynomials on the interval $[0;1]$ are studied. It is proved that the Legendre polynomials form an “almost” orthogonal system. Namely, for a fixed order of the primitive, only finitely many of these polynomials can be nonorthogonal. These properties underly the relationship between the spectral problems for differential operators in $L_2[0;1]$ and the spectral properties of generalized Jacobi matrices.
Keywords: primitives of Legendre polynomials, least and greatest eigenvalue, Jacobi matrix.
Funding agency Grant number
Russian Science Foundation 20-11-20261
This work was supported by the Russian Science Foundation under grant 20-11-20261.
Received: 30.05.2021
English version:
Mathematical Notes, 2021, Volume 110, Issue 4, Pages 489–496
DOI: https://doi.org/10.1134/S0001434621090194
Bibliographic databases:
Document Type: Article
UDC: 517.518.36+517.984
Language: Russian
Citation: T. A. Garmanova, I. A. Sheipak, “Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators”, Mat. Zametki, 110:4 (2021), 498–506; Math. Notes, 110:4 (2021), 489–496
Citation in format AMSBIB
\Bibitem{GarShe21}
\by T.~A.~Garmanova, I.~A.~Sheipak
\paper Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 4
\pages 498--506
\mathnet{http://mi.mathnet.ru/mzm13168}
\crossref{https://doi.org/10.4213/mzm13168}
\elib{https://elibrary.ru/item.asp?id=47518883}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 4
\pages 489--496
\crossref{https://doi.org/10.1134/S0001434621090194}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000711049900019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118204464}
Linking options:
  • https://www.mathnet.ru/eng/mzm13168
  • https://doi.org/10.4213/mzm13168
  • https://www.mathnet.ru/eng/mzm/v110/i4/p498
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :96
    References:53
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024