Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 1, Pages 125–133
DOI: https://doi.org/10.4213/mzm13167
(Mi mzm13167)
 

This article is cited in 3 scientific papers (total in 3 papers)

Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population

A. Yu. Shcheglovab

a Shenzhen MSU-BIT University
b Lomonosov Moscow State University
Full-text PDF (441 kB) Citations (3)
References:
Abstract: For the McKendrick model of the dynamics of an age-structured population, we consider the inverse problem of reconstructing two coefficients of the model: in the equation and in the nonlocal boundary condition of integral form. The values of the solution on a part of the boundary are used as the additional information in the inverse problem. We obtain conditions for the sought coefficients to be uniquely determined. The derived integral formulas can be used to solve the inverse problem numerically by the iteration method, taking into account the fact that the inverse problem is ill posed.
Keywords: inverse problem, population dynamics model, age-structured model.
Received: 29.05.2021
Revised: 09.08.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 1, Pages 139–146
DOI: https://doi.org/10.1134/S0001434622010151
Bibliographic databases:
Document Type: Article
UDC: 519.633.6
Language: Russian
Citation: A. Yu. Shcheglov, “Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population”, Mat. Zametki, 111:1 (2022), 125–133; Math. Notes, 111:1 (2022), 139–146
Citation in format AMSBIB
\Bibitem{Shc22}
\by A.~Yu.~Shcheglov
\paper Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 1
\pages 125--133
\mathnet{http://mi.mathnet.ru/mzm13167}
\crossref{https://doi.org/10.4213/mzm13167}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4360089}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 1
\pages 139--146
\crossref{https://doi.org/10.1134/S0001434622010151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760397500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85125479071}
Linking options:
  • https://www.mathnet.ru/eng/mzm13167
  • https://doi.org/10.4213/mzm13167
  • https://www.mathnet.ru/eng/mzm/v111/i1/p125
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :40
    References:60
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024