|
Matematicheskie Zametki, 2023, Volume 114, Issue 4, paper published in the English version journal
(Mi mzm13156)
|
|
|
|
Papers published in the English version of the journal
$N$-Laplacian Equation with a Nonlinear Neumann Boundary Condition and a Singular Nonlinearity
M. Kratou, R. Alkhal College of Sciences at Dammam, Imam Abdulrahman
Bin Faisal University, Dammam, Kingdom of Saudi Arabia
Abstract:
In this work, we investigate the existence, nonexistence, multiplicity of weak solution for the following singular Neumann problem:
\begin{equation*}
(\mathrm{P}_{\mu,\lambda})\qquad
\begin{cases}
- \Delta_N u +|u|^{N-2}u =\mu g(u) + h(x,u)e^{bu^{N/(N-1)}}
&\text{in }\Omega,
\\[2mm]
u>0 & \text{in }\Omega, \\[2mm] |\nabla u|^{N-2} \dfrac{\partial u}{\partial\nu}= \lambda\psi |u|^{q-1}u
&\text{on }\partial\Omega,
\end{cases}
\end{equation*}
where $\Omega\subset\mathbb{R}^N,$ $N\geq 2$ be a bounded smooth domain, $\Delta_N u = \nabla\cdot (|\nabla u|^{N-2}\nabla u)$ denotes the $N$-Laplace operator, $\mu,\lambda>0,$ $0<\delta<1$ and $b>0$ is a constant. Here $h(x,u)$ is a $C^{1}(\overline{\Omega}\times \mathbb{R})$ having superlinear growth at infinity and $g(u)\simeq u^{-\delta}$. Using the sub-supersolution method and the variational method, under appropriate assumptions on $g$ and $h,$ we show that there exists a region $\mathcal{R}\subset \{(\mu,\lambda)\colon\mu,\lambda>0\}$ bounded by the graph of a map $\Lambda$ such that $(P_{\mu,\lambda})$ admits at least two solutions for all $(\mu,\lambda) \in \mathcal{R},$ at least one solution for $(\mu,\lambda)\in \partial\mathcal{R}$ and no solution for all $(\mu,\lambda)$ outside $\overline{\mathcal{R}}.$
Keywords:
variational method, multiplicity results, singular equation, $N$-Laplacian equation, nonlinear Neumann boundary condition.
Received: 13.10.2021 Revised: 16.05.2022
Citation:
M. Kratou, R. Alkhal, “$N$-Laplacian Equation with a Nonlinear Neumann Boundary Condition and a Singular Nonlinearity”, Math. Notes, 114:4 (2023), 489–507
Linking options:
https://www.mathnet.ru/eng/mzm13156
|
|