Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 4, paper published in the English version journal (Mi mzm13156)  

Papers published in the English version of the journal

$N$-Laplacian Equation with a Nonlinear Neumann Boundary Condition and a Singular Nonlinearity

M. Kratou, R. Alkhal

College of Sciences at Dammam, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
Abstract: In this work, we investigate the existence, nonexistence, multiplicity of weak solution for the following singular Neumann problem:
\begin{equation*} (\mathrm{P}_{\mu,\lambda})\qquad \begin{cases} - \Delta_N u +|u|^{N-2}u =\mu g(u) + h(x,u)e^{bu^{N/(N-1)}} &\text{in }\Omega, \\[2mm] u>0 & \text{in }\Omega, \\[2mm] |\nabla u|^{N-2} \dfrac{\partial u}{\partial\nu}= \lambda\psi |u|^{q-1}u &\text{on }\partial\Omega, \end{cases} \end{equation*}
where $\Omega\subset\mathbb{R}^N,$ $N\geq 2$ be a bounded smooth domain, $\Delta_N u = \nabla\cdot (|\nabla u|^{N-2}\nabla u)$ denotes the $N$-Laplace operator, $\mu,\lambda>0,$ $0<\delta<1$ and $b>0$ is a constant. Here $h(x,u)$ is a $C^{1}(\overline{\Omega}\times \mathbb{R})$ having superlinear growth at infinity and $g(u)\simeq u^{-\delta}$. Using the sub-supersolution method and the variational method, under appropriate assumptions on $g$ and $h,$ we show that there exists a region $\mathcal{R}\subset \{(\mu,\lambda)\colon\mu,\lambda>0\}$ bounded by the graph of a map $\Lambda$ such that $(P_{\mu,\lambda})$ admits at least two solutions for all $(\mu,\lambda) \in \mathcal{R},$ at least one solution for $(\mu,\lambda)\in \partial\mathcal{R}$ and no solution for all $(\mu,\lambda)$ outside $\overline{\mathcal{R}}.$
Keywords: variational method, multiplicity results, singular equation, $N$-Laplacian equation, nonlinear Neumann boundary condition.
Received: 13.10.2021
Revised: 16.05.2022
English version:
Mathematical Notes, 2023, Volume 114, Issue 4, Pages 489–507
DOI: https://doi.org/10.1134/S0001434623090201
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Kratou, R. Alkhal, “$N$-Laplacian Equation with a Nonlinear Neumann Boundary Condition and a Singular Nonlinearity”, Math. Notes, 114:4 (2023), 489–507
Citation in format AMSBIB
\Bibitem{KraAlk23}
\by M.~Kratou, R.~Alkhal
\paper $N$-Laplacian Equation with a Nonlinear Neumann Boundary Condition and a Singular Nonlinearity
\jour Math. Notes
\yr 2023
\vol 114
\issue 4
\pages 489--507
\mathnet{http://mi.mathnet.ru/mzm13156}
\crossref{https://doi.org/10.1134/S0001434623090201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4662923}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85174943756}
Linking options:
  • https://www.mathnet.ru/eng/mzm13156
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024