Abstract:
We writef=Ω(g) if f(x)⩾cg(x) with some positive constant c for all x from the domain of functions f and g. We show that at least Ω(n2/r) entries must be changed in an arbitrary (generalized) Hadamard matrix in order to reduce its rank below r. This improves the previously known bound Ω(n2/r2). If we additionally know that the changes are bounded above in absolute value by some number θ⩾n/r, then the number of these entries is bounded below by Ω(n3/(rθ2)), which improves upon the previously known bound Ω(n2/θ2).
Citation:
B. S. Kashin, A. A. Razborov, “Improved lower bounds on the rigidity of Hadamard matrices”, Mat. Zametki, 63:4 (1998), 535–540; Math. Notes, 63:4 (1998), 471–475
This publication is cited in the following 29 articles:
M. Rosicka, S. Szarek, A. Rutkowski, P. Gnaciński, M. Horodecki, “Constructive nonlocal games with very small classical values”, Phys. Rev. A, 110:5 (2024)
B. V. Konoplev, “Ob obraschenii funktsii Valianta rangovoi ustoichivosti matritsy”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 60–65
Grochow J.A., “New Applications of the Polynomial Method: the Cap Set Conjecture and Beyond”, Bull. Amer. Math. Soc., 56:1 (2019), 29–64
Alman J., Williams R., “Probabilistic Rank and Matrix Rigidity”, Stoc'17: Proceedings of the 49Th Annual Acm Sigact Symposium on Theory of Computing, Annual Acm Symposium on Theory of Computing, eds. Hatami H., McKenzie P., King V., Assoc Computing Machinery, 2017, 641–652
Samorodnitsky A., Shkredov I., Yekhanin S., “Kolmogorov Width of Discrete Linear Spaces: an Approach to Matrix Rigidity”, Comput. Complex., 25:2, SI (2016), 309–348
Gesmundo F., Hauenstein J.D., Ikenmeyer Ch., Landsberg J.M., “Complexity of Linear Circuits and Geometry”, Found. Comput. Math., 16:3 (2016), 599–635
Forster J, Simon H.U., “On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes”, Theoret. Comput. Sci., 350:1 (2006), 40–48