Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 63, Issue 4, Pages 535–540
DOI: https://doi.org/10.4213/mzm1314
(Mi mzm1314)
 

This article is cited in 29 scientific papers (total in 29 papers)

Improved lower bounds on the rigidity of Hadamard matrices

B. S. Kashin, A. A. Razborov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We writef=Ω(g) if f(x)cg(x) with some positive constant c for all x from the domain of functions f and g. We show that at least Ω(n2/r) entries must be changed in an arbitrary (generalized) Hadamard matrix in order to reduce its rank below r. This improves the previously known bound Ω(n2/r2). If we additionally know that the changes are bounded above in absolute value by some number θn/r, then the number of these entries is bounded below by Ω(n3/(rθ2)), which improves upon the previously known bound Ω(n2/θ2).
Received: 01.12.1997
English version:
Mathematical Notes, 1998, Volume 63, Issue 4, Pages 471–475
DOI: https://doi.org/10.1007/BF02311250
Bibliographic databases:
Document Type: Article
UDC: 519.142+517.984.4
Language: Russian
Citation: B. S. Kashin, A. A. Razborov, “Improved lower bounds on the rigidity of Hadamard matrices”, Mat. Zametki, 63:4 (1998), 535–540; Math. Notes, 63:4 (1998), 471–475
Citation in format AMSBIB
\Bibitem{KasRaz98}
\by B.~S.~Kashin, A.~A.~Razborov
\paper Improved lower bounds on the rigidity of Hadamard matrices
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 4
\pages 535--540
\mathnet{http://mi.mathnet.ru/mzm1314}
\crossref{https://doi.org/10.4213/mzm1314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680943}
\zmath{https://zbmath.org/?q=an:0917.15013}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 4
\pages 471--475
\crossref{https://doi.org/10.1007/BF02311250}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075783100029}
Linking options:
  • https://www.mathnet.ru/eng/mzm1314
  • https://doi.org/10.4213/mzm1314
  • https://www.mathnet.ru/eng/mzm/v63/i4/p535
  • This publication is cited in the following 29 articles:
    1. M. Rosicka, S. Szarek, A. Rutkowski, P. Gnaciński, M. Horodecki, “Constructive nonlocal games with very small classical values”, Phys. Rev. A, 110:5 (2024)  crossref
    2. B. V. Konoplev, “Ob obraschenii funktsii Valianta rangovoi ustoichivosti matritsy”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 60–65  mathnet  crossref
    3. Grochow J.A., “New Applications of the Polynomial Method: the Cap Set Conjecture and Beyond”, Bull. Amer. Math. Soc., 56:1 (2019), 29–64  crossref  mathscinet  zmath  isi  scopus
    4. Alman J., Williams R., “Probabilistic Rank and Matrix Rigidity”, Stoc'17: Proceedings of the 49Th Annual Acm Sigact Symposium on Theory of Computing, Annual Acm Symposium on Theory of Computing, eds. Hatami H., McKenzie P., King V., Assoc Computing Machinery, 2017, 641–652  crossref  mathscinet  zmath  isi  scopus
    5. Samorodnitsky A., Shkredov I., Yekhanin S., “Kolmogorov Width of Discrete Linear Spaces: an Approach to Matrix Rigidity”, Comput. Complex., 25:2, SI (2016), 309–348  crossref  mathscinet  zmath  isi  elib  scopus
    6. Gesmundo F., Hauenstein J.D., Ikenmeyer Ch., Landsberg J.M., “Complexity of Linear Circuits and Geometry”, Found. Comput. Math., 16:3 (2016), 599–635  crossref  mathscinet  zmath  isi  scopus
    7. Alon N., Cohen G., “on Rigid Matrices and U-Polynomials”, Comput. Complex., 24:4 (2015), 851–879  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    8. Alon N., Cohen G., “on Rigid Matrices and U-Polynomials”, 2013 IEEE Conference on Computational Complexity (Ccc), IEEE Conference on Computational Complexity, IEEE, 2013, 197–206  crossref  mathscinet  isi  scopus
    9. Alekhnovich M., “More on Average Case Vs Approximation Complexity”, Comput. Complex., 20:4, SI (2011), 755–786  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    10. Sherstov A.A., “The Unbounded-Error Communication Complexity of Symmetric Functions”, Combinatorica, 31:5 (2011), 583–614  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    11. Jukna S., Schnitger G., “Min-Rank Conjecture for Log-Depth Circuits”, J. Comput. Syst. Sci., 77:6, SI (2011), 1023–1038  crossref  mathscinet  zmath  isi  scopus  scopus
    12. Saraf Sh., Yekhanin S., “Noisy Interpolation of Sparse Polynomials, and Applications”, 2011 IEEE 26th Annual Conference on Computational Complexity (Ccc), Annual IEEE Conference on Computational Complexity, IEEE Computer Soc, 2011, 86–92  crossref  mathscinet  isi  scopus  scopus
    13. Klivans A.R., Sherstov A.A., “Lower Bounds for Agnostic Learning via Approximate Rank”, Comput. Complex., 19:4 (2010), 581–604  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    14. Linial N., Shraibman A., “Learning complexity vs. communication complexity”, Combin. Probab. Comput., 18:1-2 (2009), 227–245  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. Alon N., Panigrahy R., Yakhanin S., “Deterministic Approximation Algorithms for the Nearest Codeword Problem”, Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Computer Science, 5687, eds. Dinur I., Jansen K., Naor J., Rolim J., Springer-Verlag Berlin, 2009, 339–351  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Keevash P., “Shadows and intersections: stability and new proofs”, Adv. Math., 218:5 (2008), 1685–1703  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Linial N., Shraibman A., “Learning Complexity Vs. Communication Complexity”, Twenty-Third Annual IEEE Conference on Computational Complexity, Proceedings, Annual IEEE Conference on Computational Complexity, IEEE Computer Soc, 2008, 53–63  crossref  mathscinet  isi  scopus  scopus
    18. Linial N., Mendelson Sh., Schechtman G., Shraibman A., “Complexity measures of sign matrices”, Combinatorica, 27:4 (2007), 439–463  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    19. Klivans A.R., Sherstov A.A., “A Lower Bound for Agnostically Learning Disjunctions”, Learning Theory, Proceedings, Lecture Notes in Computer Science, 4539, eds. Bshouty N., Gentile C., Springer-Verlag Berlin, 2007, 409–423  crossref  mathscinet  zmath  isi
    20. Forster J, Simon H.U., “On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes”, Theoret. Comput. Sci., 350:1 (2006), 40–48  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1142
    Full-text PDF :316
    References:109
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025