Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 110, Issue 4, Pages 550–568
DOI: https://doi.org/10.4213/mzm13138
(Mi mzm13138)
 

This article is cited in 3 scientific papers (total in 3 papers)

Regularity of the Solution of the Prandtl Equation

V. È. Petrova, T. A. Suslinab

a TWELL, Saint Petersburg
b Saint Petersburg State University
Full-text PDF (636 kB) Citations (3)
References:
Abstract: Solvability and regularity of the solution of the Dirichlet problem for the Prandtl equation
$$ \frac{u(x)}{p(x)}-\frac{1}{2\pi}\int_{-1}^1\frac{u'(t)}{t-x}\,dt=f(x) $$
is studied. Here $p(x)$ is a positive function on $(-1,1)$ such that $\sup(1-x^2)/p(x)<\infty$. We introduce the scale of spaces $\widetilde H^s(-1,1)$ in terms of the special integral transformation on the interval $(-1,1)$. We obtain theorems about the existence and uniqueness of the solution in the classes $\widetilde H^{s}(-1,1)$ with $0\le s\le 1$. In particular, for $s=1$ the result is as follows: if $r^{1/2}f\in L_2$, then $r^{-1/2}u,r^{1/2}u'\in L_2$, where $r(x)=1-x^2$.
Keywords: Prandtl equation, weak solution, Fourier integral transformation, integral transformation on the interval.
Funding agency Grant number
Russian Science Foundation 17-11-01069
This work was supported by the Russian Science Foundation under grant 17-11-01069.
Received: 05.05.2021
English version:
Mathematical Notes, 2021, Volume 110, Issue 4, Pages 543–559
DOI: https://doi.org/10.1134/S0001434621090248
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. È. Petrov, T. A. Suslina, “Regularity of the Solution of the Prandtl Equation”, Mat. Zametki, 110:4 (2021), 550–568; Math. Notes, 110:4 (2021), 543–559
Citation in format AMSBIB
\Bibitem{PetSus21}
\by V.~\`E.~Petrov, T.~A.~Suslina
\paper Regularity of the Solution of the Prandtl Equation
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 4
\pages 550--568
\mathnet{http://mi.mathnet.ru/mzm13138}
\crossref{https://doi.org/10.4213/mzm13138}
\elib{https://elibrary.ru/item.asp?id=47518950}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 4
\pages 543--559
\crossref{https://doi.org/10.1134/S0001434621090248}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000711049900024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118174435}
Linking options:
  • https://www.mathnet.ru/eng/mzm13138
  • https://doi.org/10.4213/mzm13138
  • https://www.mathnet.ru/eng/mzm/v110/i4/p550
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024