Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 5, paper published in the English version journal (Mi mzm13126)  

This article is cited in 2 scientific papers (total in 2 papers)

Papers published in the English version of the journal

On the Estimates of Periodic Eigenvalues of Sturm–Liouville Operators with Trigonometric Polynomial Potentials

C. Nur

Department of Electrical & Electronics Engineering, Yalova University, Yalova, 77200 Turkey
Citations (2)
Abstract: We provide estimates for the eigenvalues of non-self-adjoint Sturm–Liouville operators with periodic and antiperiodic boundary conditions for special potentials that are trigonometric polynomials. Moreover, we give error estimations and, finally, we present an example.
Keywords: eigenvalue estimations, periodic and antiperiodic boundary conditions, numerical methods.
Funding agency Grant number
Yalova University 2019/AP/0010
The author is grateful for the Research Fund of Yalova University (project no. 2019/AP/0010).
Received: 30.01.2019
Revised: 29.10.2019
English version:
Mathematical Notes, 2021, Volume 109, Issue 5, Pages 794–807
DOI: https://doi.org/10.1134/S0001434621050114
Bibliographic databases:
Document Type: Article
Language: English
Citation: C. Nur, “On the Estimates of Periodic Eigenvalues of Sturm–Liouville Operators with Trigonometric Polynomial Potentials”, Math. Notes, 109:5 (2021), 794–807
Citation in format AMSBIB
\Bibitem{Nur21}
\by C.~Nur
\paper On the Estimates of Periodic Eigenvalues of Sturm--Liouville Operators with
Trigonometric Polynomial Potentials
\jour Math. Notes
\yr 2021
\vol 109
\issue 5
\pages 794--807
\mathnet{http://mi.mathnet.ru/mzm13126}
\crossref{https://doi.org/10.1134/S0001434621050114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513000011}
\elib{https://elibrary.ru/item.asp?id=46908589}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109251498}
Linking options:
  • https://www.mathnet.ru/eng/mzm13126
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024