Loading [MathJax]/jax/output/CommonHTML/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 4, Pages 553–567
DOI: https://doi.org/10.4213/mzm131
(Mi mzm131)
 

This article is cited in 12 scientific papers (total in 12 papers)

Controllability for a Nonlinear Abstract Evolution Equation

A. V. Rozanova

Peoples Friendship University of Russia
References:
Abstract: We prove a theorem on the local controllability of a system described by a nonlinear evolution equation in Banach space when the control is a multiplier on the right-hand side. We obtain sufficient conditions on the size of the neighborhood from which we can take the function from the overdetermination condition so that the inverse problem is uniquely solvable.
Received: 20.01.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 4, Pages 511–524
DOI: https://doi.org/10.1023/B:MATN.0000043481.71476.9e
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. V. Rozanova, “Controllability for a Nonlinear Abstract Evolution Equation”, Mat. Zametki, 76:4 (2004), 553–567; Math. Notes, 76:4 (2004), 511–524
Citation in format AMSBIB
\Bibitem{Roz04}
\by A.~V.~Rozanova
\paper Controllability for a Nonlinear Abstract Evolution Equation
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 4
\pages 553--567
\mathnet{http://mi.mathnet.ru/mzm131}
\crossref{https://doi.org/10.4213/mzm131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2112071}
\zmath{https://zbmath.org/?q=an:1063.93008}
\elib{https://elibrary.ru/item.asp?id=13447616}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 4
\pages 511--524
\crossref{https://doi.org/10.1023/B:MATN.0000043481.71476.9e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224874900025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-5044222419}
Linking options:
  • https://www.mathnet.ru/eng/mzm131
  • https://doi.org/10.4213/mzm131
  • https://www.mathnet.ru/eng/mzm/v76/i4/p553
    Erratum
    This publication is cited in the following 12 articles:
    1. A. V Chernov, “O tochnoy upravlyaemosti polulineynogo evolyutsionnogo uravneniya s neogranichennym operatorom”, Differencialʹnye uravneniâ, 59:2 (2023), 257  crossref
    2. A. V. Chernov, “On the Exact Controllability of a Semilinear Evolution Equation with an Unbounded Operator”, Diff Equat, 59:2 (2023), 265  crossref
    3. Dekkers A. Rozanova-Pierrat A. Teplyaev A., “Mixed Boundary Valued Problems For Linear and Nonlinear Wave Equations in Domains With Fractal Boundaries”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 75  crossref  mathscinet  isi  scopus
    4. Adrien Dekkers, Anna Rozanova-Pierrat, “Dirichlet boundary valued problems for linear and nonlinear wave equations on arbitrary and fractal domains”, Journal of Mathematical Analysis and Applications, 512:1 (2022), 126089  crossref
    5. Meng K., Chen Y., “Stability and Solvability Analysis For a Class of Optimal Control Problems Described By Fractional Differential Equations With Non-Instantaneous Impulses”, Filomat, 35:12 (2021), 4221–4237  crossref  mathscinet  isi
    6. Chen Y., Meng K., “Stability and Solvability For a Class of Optimal Control Problems Described By Non-Instantaneous Impulsive Differential Equations”, Adv. Differ. Equ., 2020:1 (2020), 524  crossref  mathscinet  isi  scopus
    7. A. V. Chernov, “Ob upravlyaemosti nelineinykh raspredelennykh sistem na mnozhestve konechnomernykh approksimatsii upravleniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 1, 83–98  mathnet
    8. A. V. Chernov, “Sufficient conditions for the controllability of nonlinear distributed systems”, Comput. Math. Math. Phys., 52:8 (2012), 1115–1127  mathnet  crossref  mathscinet  adsnasa  isi  elib  elib
    9. Chernov A.V., “On the Convexity of Global Solvability Sets for Controlled Initial-Boundary Value Problems”, Differ. Equ., 48:4 (2012), 586–595  crossref  mathscinet  mathscinet  zmath  isi  elib  elib  scopus
    10. Rozanova-Pierrat A., “On the controllability for the Khokhlov-Zabolotskaya-Kuznetsov-like equation”, Applicable Analysis, 89:3 (2010), 391–408  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    11. N. Hamdi, “An inverse problem for a nonlinear transport equation with final overdetermination”, Lobachevskii J Math, 29:4 (2008), 230  crossref
    12. A. V. Rozanova, “Letter to the Editor”, Math. Notes, 78:5 (2005), 745–745  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:423
    Full-text PDF :225
    References:65
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025