|
Enumeration of Matchings in Complete $q$-ary Trees
N. A. Kuz'minab, D. S. Malyshevab a National Research University "Higher School of Economics", Nizhny Novgorod Branch
b National Research Lobachevsky State University of Nizhny Novgorod
Abstract:
We study the asymptotic behavior of the parameters $m(T_{q,n})$ and $im(T_{q,n})$, that equal the number of matchings and independent matchings in a complete $q$-ary tree $T_{q,n}$ of height $n$. We show that, for any $q\ge 2$, there exists a $b_q>1$ such that, as $n\to+\infty$, the following asymptotic equality holds:
$$
m(T_{q,n})\sim\biggl(\frac{1+\sqrt{1+4\cdot q}}2\,\biggr)^{-1/(q-1)}\cdot(b_q)^{q^n}.
$$
We also show that, for any $q\in \{1,2,3\}$, there exist numbers $a'_q$ and $b'_q>1$ such that $im(T_{q,n})\sim a'_q\cdot (b'_q)^{q^{n}}$ as $n\to+\infty$, and also, for any sufficiently large $q$, there exist numbers $a^{1}_q\ne a^{2}_q$ and $b'_q>1$ such that, as $n\to+\infty$, the following asymptotic equalities hold:
\begin{gather*} im(T_{q,3n})\sim a^{1}_q\cdot (b'_q)^{q^{3n}}, \\ im(T_{q,3n+1})\sim a^{2}_q\cdot (b'_q)^{q^{3n+1}},\qquad im(T_{q,3n+2})\sim a^{1}_q\cdot (b'_q)^{q^{3n+2}}.
\end{gather*}
Keywords:
limit theorem, matching, independent matching, complete $q$-ary tree.
Received: 03.04.2021
Citation:
N. A. Kuz'min, D. S. Malyshev, “Enumeration of Matchings in Complete $q$-ary Trees”, Mat. Zametki, 111:3 (2022), 393–402; Math. Notes, 111:3 (2022), 398–406
Linking options:
https://www.mathnet.ru/eng/mzm13094https://doi.org/10.4213/mzm13094 https://www.mathnet.ru/eng/mzm/v111/i3/p393
|
Statistics & downloads: |
Abstract page: | 201 | Full-text PDF : | 31 | References: | 37 | First page: | 5 |
|