Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 110, Issue 6, Pages 824–836
DOI: https://doi.org/10.4213/mzm13090
(Mi mzm13090)
 

This article is cited in 19 scientific papers (total in 19 papers)

Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation

R. R. Ashurova, Yu. È. Fayzievb

a Institute of Mathematics, National University of Uzbekistan named by after Mirzo Ulugbek
b National University of Uzbekistan named after M. Ulugbek
References:
Abstract: The paper investigates an inverse problem for finding the order of the fractional derivative in the sense of Gerasimov–Caputo in the wave equation with an arbitrary positive self-adjoint operator $A$ having a discrete spectrum. By means of the classical Fourier method, it is proved that the value of the projection of the solution onto some eigenfunction at a fixed time uniquely restores the order of the derivative. Several examples of the operator $A$ are discussed, including a linear system of fractional differential equations, fractional Sturm–Liouville operators, and many others.
Keywords: wave equation, fractional derivative in the sense of Gerasimov–Caputo, inverse problems for determining the order of the derivative.
Received: 31.03.2021
Revised: 05.07.2021
English version:
Mathematical Notes, 2021, Volume 110, Issue 6, Pages 842–852
DOI: https://doi.org/10.1134/S0001434621110213
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: R. R. Ashurov, Yu. È. Fayziev, “Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation”, Mat. Zametki, 110:6 (2021), 824–836; Math. Notes, 110:6 (2021), 842–852
Citation in format AMSBIB
\Bibitem{AshFay21}
\by R.~R.~Ashurov, Yu.~\`E.~Fayziev
\paper Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 6
\pages 824--836
\mathnet{http://mi.mathnet.ru/mzm13090}
\crossref{https://doi.org/10.4213/mzm13090}
\elib{https://elibrary.ru/item.asp?id=47257201}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 6
\pages 842--852
\crossref{https://doi.org/10.1134/S0001434621110213}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000730355100021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85121382266}
Linking options:
  • https://www.mathnet.ru/eng/mzm13090
  • https://doi.org/10.4213/mzm13090
  • https://www.mathnet.ru/eng/mzm/v110/i6/p824
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :75
    References:58
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024