Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 6, Pages 887–894
DOI: https://doi.org/10.4213/mzm13074
(Mi mzm13074)
 

On Minimal Asymptotic Bases

C.-F. Sun, Zhi Cheng

School of Mathematics and Statistics, Anhui Normal University
References:
Abstract: Let $\mathbb N$ denote the set of all nonnegative integers, and let $A\subseteq\mathbb N$. Let $h,n\in\mathbb N$, $h\ge 2$ and $r_h(A,n)=\#\{(a_1,\dots,a_h)\in A^h:a_1+\dotsb+a_h=n\}$. The set $A$ is called an asymptotic basis of order $h$ if $r_h(A,n)\ge 1$ for all sufficiently large integer $n$. An asymptotic basis $A$ of order $h$ is minimal if no proper subset of $A$ is an asymptotic basis of order $h$. Recently, Sun used 2-adic representations of integers to construct a new class of minimal asymptotic bases of order $h$. In this paper, we generalize the 2-adic result to the $g$-adic case.
Keywords: minimal asymptotic basis, partition, $g$-adic representation.
Funding agency Grant number
National Natural Science Foundation of China 11971033
Natural Science Foundation of Anhui Province KJ2018A0304
This work was supported by the National Natural Science Foundation of China (Grant no. 11971033) and the Natural Science Foundation of Anhui Higher Education Institutions of China (grant no. KJ2018A0304).
Received: 18.03.2021
Revised: 12.11.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 6, Pages 925–931
DOI: https://doi.org/10.1134/S0001434622050261
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: C.-F. Sun, Zhi Cheng, “On Minimal Asymptotic Bases”, Mat. Zametki, 111:6 (2022), 887–894; Math. Notes, 111:6 (2022), 925–931
Citation in format AMSBIB
\Bibitem{SunZhi22}
\by C.-F.~Sun, Zhi Cheng
\paper On Minimal Asymptotic Bases
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 6
\pages 887--894
\mathnet{http://mi.mathnet.ru/mzm13074}
\crossref{https://doi.org/10.4213/mzm13074}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 6
\pages 925--931
\crossref{https://doi.org/10.1134/S0001434622050261}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132917272}
Linking options:
  • https://www.mathnet.ru/eng/mzm13074
  • https://doi.org/10.4213/mzm13074
  • https://www.mathnet.ru/eng/mzm/v111/i6/p887
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :24
    References:60
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024