Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 63, Issue 3, Pages 457–467
DOI: https://doi.org/10.4213/mzm1303
(Mi mzm1303)
 

This article is cited in 1 scientific paper (total in 1 paper)

Sequences of maximal terms and central exponents of derivatives of Dirichlet series

M. N. Sheremeta

Ivan Franko National University of L'viv
Full-text PDF (187 kB) Citations (1)
References:
Abstract: For the Dirichlet series corresponding to a function $F$ with positive exponents increasing to $\infty$ and with abscissa of absolute convergence $A\in(-\infty,+\infty]$, it is proved that the sequences $\bigl(\mu(\sigma,F^{(m)})\bigr)$ of maximal terms and $\bigl(\Lambda(\sigma,F^{(m)})\bigr)$ of central exponents are nondecreasing to $\infty$ as $m\to\infty$ for any given $\sigma<A$, and
$$ \varlimsup_{m\to\infty}\frac{\ln\mu(\sigma,F^{(m)})}{m\ln m}\le1 \quad\text{and}\quad \varlimsup_{m\to\infty}\frac{\ln\Lambda(\sigma,F^{(m)})}{\ln m}\le1. $$
Necessary and sufficient conditions for putting the equality sign and replacing $\varlimsup$ by $\lim$ in these relations are given.
Received: 01.04.1996
English version:
Mathematical Notes, 1998, Volume 63, Issue 3, Pages 401–410
DOI: https://doi.org/10.1007/BF02317789
Bibliographic databases:
UDC: 517.537.2
Language: Russian
Citation: M. N. Sheremeta, “Sequences of maximal terms and central exponents of derivatives of Dirichlet series”, Mat. Zametki, 63:3 (1998), 457–467; Math. Notes, 63:3 (1998), 401–410
Citation in format AMSBIB
\Bibitem{She98}
\by M.~N.~Sheremeta
\paper Sequences of maximal terms and central exponents of derivatives of Dirichlet series
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 3
\pages 457--467
\mathnet{http://mi.mathnet.ru/mzm1303}
\crossref{https://doi.org/10.4213/mzm1303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1631905}
\zmath{https://zbmath.org/?q=an:0915.30003}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 3
\pages 401--410
\crossref{https://doi.org/10.1007/BF02317789}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075783100018}
Linking options:
  • https://www.mathnet.ru/eng/mzm1303
  • https://doi.org/10.4213/mzm1303
  • https://www.mathnet.ru/eng/mzm/v63/i3/p457
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024