Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 2, paper published in the English version journal (Mi mzm13020)  

This article is cited in 4 scientific papers (total in 4 papers)

Papers published in the English version of the journal

Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities

A. Daouesa, A. Hammamia, K. Saoudib

a École Supérieur des Sciences et de la Technologie de Hammam Sousse, Université de Sousse, Sousse, 4011 Tunisia
b Department of Mathematics, College of Sciences at Dammam, Imam Abdulrahman Bin Faisal University, Dammam, 31441 Kingdom of Saudi Arabia
Citations (4)
Abstract: In this work, we investigate the following fractional $p$-Laplacian equation involving a concave-convex nonlinearities as follows,
$$ {(P_\lambda)} \begin{cases} (-\Delta)_p^s u = \lambda u^{q} + u^{r} &\text{in }\Omega, \\ u>0 & \text{in }\Omega, \\ u = 0 &\text{in }\mathbb{R}^N\setminus\Omega, \end{cases} $$
where $\Omega\subset\mathbb{R}^N$, $N\geq 2$ is a bounded domain with $C^{1,1}$ boundary $\partial\Omega$, $\lambda >0$, $1<p<\infty$, $s\in (0,1)$ such that $N\geq s p$, $0<q<p-1<r\leq p^*_s-1$, $p^*_s = \frac{Np}{N-s p}$ is the fractional critical Sobolev exponent and the nonlinear nonlocal operator $(-\Delta)^s_p u$ with $s\in (0,1)$ is the $p$-fractional Laplacian defined on smooth functions by
\begin{align*} (-\Delta)^s_p u(x)=2 \underset{\epsilon\searrow 0}{\lim}\int_{\mathbb{R}^{N}\setminus B_\epsilon} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+ ps}}\,{\mathrm d}y,\qquad x\in \mathbb{R}^N. \end{align*}
We use variational methods, in order to show the existence of multiple positive solutions to the problem $(P_\lambda)$ for different value of $\lambda$.
Keywords: Nonlocal operator, fractional $p$-Laplacian, variationals methods, multiple solutions.
Received: 25.12.2019
English version:
Mathematical Notes, 2021, Volume 109, Issue 2, Pages 192–207
DOI: https://doi.org/10.1134/S0001434621010235
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Daoues, A. Hammami, K. Saoudi, “Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities”, Math. Notes, 109:2 (2021), 192–207
Citation in format AMSBIB
\Bibitem{DaoHamSao21}
\by A.~Daoues, A.~Hammami, K.~Saoudi
\paper Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities
\jour Math. Notes
\yr 2021
\vol 109
\issue 2
\pages 192--207
\mathnet{http://mi.mathnet.ru/mzm13020}
\crossref{https://doi.org/10.1134/S0001434621010235}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670512900023}
Linking options:
  • https://www.mathnet.ru/eng/mzm13020
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:128
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024