|
Matematicheskie Zametki, 2021, Volume 109, Issue 2, paper published in the English version journal
(Mi mzm13020)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Papers published in the English version of the journal
Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities
A. Daouesa, A. Hammamia, K. Saoudib a École Supérieur des Sciences et de la Technologie de Hammam Sousse, Université de Sousse, Sousse, 4011 Tunisia
b Department of Mathematics, College of Sciences at Dammam,
Imam Abdulrahman Bin Faisal University, Dammam,
31441 Kingdom of Saudi Arabia
Abstract:
In this work, we investigate the following fractional $p$-Laplacian equation involving a concave-convex nonlinearities as follows,
$$
{(P_\lambda)}
\begin{cases}
(-\Delta)_p^s u = \lambda u^{q} + u^{r}
&\text{in }\Omega,
\\
u>0 & \text{in }\Omega,
\\
u = 0 &\text{in }\mathbb{R}^N\setminus\Omega,
\end{cases}
$$
where $\Omega\subset\mathbb{R}^N$, $N\geq 2$ is a bounded domain with $C^{1,1}$ boundary $\partial\Omega$,
$\lambda >0$, $1<p<\infty$, $s\in (0,1)$ such that $N\geq s p$, $0<q<p-1<r\leq p^*_s-1$, $p^*_s = \frac{Np}{N-s p}$
is the fractional critical Sobolev exponent and
the nonlinear
nonlocal operator $(-\Delta)^s_p u$ with $s\in (0,1)$ is the $p$-fractional
Laplacian defined on smooth functions by
\begin{align*}
(-\Delta)^s_p u(x)=2 \underset{\epsilon\searrow 0}{\lim}\int_{\mathbb{R}^{N}\setminus B_\epsilon}
\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+ ps}}\,{\mathrm d}y,\qquad x\in \mathbb{R}^N.
\end{align*}
We use variational methods, in order to
show the existence of multiple positive solutions to the problem $(P_\lambda)$ for different value of
$\lambda$.
Keywords:
Nonlocal operator, fractional
$p$-Laplacian, variationals methods, multiple solutions.
Received: 25.12.2019
Citation:
A. Daoues, A. Hammami, K. Saoudi, “Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities”, Math. Notes, 109:2 (2021), 192–207
Linking options:
https://www.mathnet.ru/eng/mzm13020
|
Statistics & downloads: |
Abstract page: | 128 |
|