|
This article is cited in 27 scientific papers (total in 27 papers)
On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
G. A. Sviridyuka, T. G. Sukachevab a Chelyabinsk State University
b Novgorod State Pedagogical Istitute
Abstract:
We study the local solvability of the Cauchy–Dirichlet problem for the system
\begin{gather*}
(1-\varkappa\nabla ^2)\mathbf v_t=\nu\nabla^2\mathbf v-(\mathbf v\cdot\nabla)\mathbf v-\nabla p+\mathbf f(t),
\\
0=-\nabla(\nabla\cdot\mathbf v),
\end{gather*}
which describes the dynamics of an incompressible viscoelastic Kelvin–Voigt fluid. The configuration space of the problem is described.
Received: 09.02.1993
Citation:
G. A. Sviridyuk, T. G. Sukacheva, “On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid”, Mat. Zametki, 63:3 (1998), 442–450; Math. Notes, 63:3 (1998), 388–395
Linking options:
https://www.mathnet.ru/eng/mzm1301https://doi.org/10.4213/mzm1301 https://www.mathnet.ru/eng/mzm/v63/i3/p442
|
|