Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 110, Issue 3, Pages 450–458
DOI: https://doi.org/10.4213/mzm13005
(Mi mzm13005)
 

This article is cited in 1 scientific paper (total in 1 paper)

Inequalities between Best Polynomial Approximants and Smoothness Characteristics of Functions in L2L2

M. Sh. Shabozov

Tajik National University, Dushanbe
Full-text PDF (479 kB) Citations (1)
References:
Abstract: Exact constants in Jackson–Stechkin type inequalities are found for the smoothness characteristics Λm(f)Λm(f), mN, determined by averaging the norm of finite differences of mth order of functions fL2. A solution is given of the extremal problem of finding the supremum for best joint polynomial approximations of functions and their successive derivatives on some classes of functions from L2 whose averaged norms of finite differences are bounded above by 1.
Keywords: best approximations, upper bound, smoothness characteristic, finite differences.
Received: 10.01.2021
Revised: 02.06.2021
English version:
Mathematical Notes, 2021, Volume 110, Issue 3, Pages 432–439
DOI: https://doi.org/10.1134/S000143462109011X
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, “Inequalities between Best Polynomial Approximants and Smoothness Characteristics of Functions in L2”, Mat. Zametki, 110:3 (2021), 450–458; Math. Notes, 110:3 (2021), 432–439
Citation in format AMSBIB
\Bibitem{Sha21}
\by M.~Sh.~Shabozov
\paper Inequalities between Best Polynomial Approximants and Smoothness Characteristics of Functions in~$L_2$
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 3
\pages 450--458
\mathnet{http://mi.mathnet.ru/mzm13005}
\crossref{https://doi.org/10.4213/mzm13005}
\elib{https://elibrary.ru/item.asp?id=47521692}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 3
\pages 432--439
\crossref{https://doi.org/10.1134/S000143462109011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000711049900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118226666}
Linking options:
  • https://www.mathnet.ru/eng/mzm13005
  • https://doi.org/10.4213/mzm13005
  • https://www.mathnet.ru/eng/mzm/v110/i3/p450
  • This publication is cited in the following 1 articles:
    1. B. S. Darkhovsky, “Estimate of the Hölder Exponent Based on the $\epsilon$-Complexity of Continuous Functions”, Math. Notes, 111:4 (2022), 628–631  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :56
    References:37
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025