Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 2, Pages 188–201
DOI: https://doi.org/10.4213/mzm12986
(Mi mzm12986)
 

This article is cited in 3 scientific papers (total in 3 papers)

Some Properties of Subcompact Spaces

V. I. Belugina, A. V. Osipovabc, E. G. Pytkeevab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
c Ural State University of Economics, Ekaterinburg
Full-text PDF (525 kB) Citations (3)
References:
Abstract: A Hausdorff topological space $X$ is said to be subcompact if it admits a coarser compact Hausdorff topology. P. S. Alexandroff asked the following question: What Hausdorff spaces are subcompact? A compact space $X$ is called a strict $a$-space if, for any $C\in [X]^{\le\omega}$, there exists a one-to-one continuous map of $X\setminus C$ onto a compact space $Y$ which can be continuously extended to the entire space $X$. The paper continues the study of classes of subcompact spaces. It is proved that the product of a compact space and a dyadic compact space without isolated points is a strict $a$-space.
Keywords: continuous bijection, condensation, $a$-space, strict $a$-space, dyadic compact space, subcompact space.
Received: 21.12.2020
Revised: 10.08.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 2, Pages 193–203
DOI: https://doi.org/10.1134/S0001434622010229
Bibliographic databases:
Document Type: Article
UDC: 515.122.5
Language: Russian
Citation: V. I. Belugin, A. V. Osipov, E. G. Pytkeev, “Some Properties of Subcompact Spaces”, Mat. Zametki, 111:2 (2022), 188–201; Math. Notes, 111:2 (2022), 193–203
Citation in format AMSBIB
\Bibitem{BelOsiPyt22}
\by V.~I.~Belugin, A.~V.~Osipov, E.~G.~Pytkeev
\paper Some Properties of Subcompact Spaces
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 2
\pages 188--201
\mathnet{http://mi.mathnet.ru/mzm12986}
\crossref{https://doi.org/10.4213/mzm12986}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461249}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 2
\pages 193--203
\crossref{https://doi.org/10.1134/S0001434622010229}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760397500022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85125474702}
Linking options:
  • https://www.mathnet.ru/eng/mzm12986
  • https://doi.org/10.4213/mzm12986
  • https://www.mathnet.ru/eng/mzm/v111/i2/p188
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024