Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 2, paper published in the English version journal (Mi mzm12966)  

This article is cited in 2 scientific papers (total in 2 papers)

Papers published in the English version of the journal

Borsuk's Partition Problem in $(\mathbb{R}^{n},\ell_{p})$

Jun Wanga, Yuqin Zhangb

a Center for Applied Mathematics, Tianjin University, Tianjin, 300072 China
b School of Mathematics, Tianjin University, Tianjin, 300072 China
Citations (2)
Abstract: For a bounded set $X$ with diameter $d_{C}(X)$ in a finite-dimensional normed space with an origin-symmetric convex body $C$ as the unit ball, the Borsuk number of $X$, denoted by $a_{C}(X)$, is the smallest integer $k$ such that $X$ can be represented as a union of $k$ sets, the diameter of each of which is strictly less than $d_{C}(X)$. In this paper, we solve the problem of finding the upper bound for the Borsuk number for any bounded set $X$ in the special Minkowski spaces $(\mathbb{R}^{n},\ell_{p})$. We have $a_{C}(X)\leq 2^{n}$ in $(\mathbb{R}^{n},\ell_{p})$, for all $p$ satisfying $1/(\log_{n}(n+1)-1)< p \leq + \infty$ and $2\leq n$, $n\in\mathbb{N}^{+}$. If $n=2$, we have $a_{C}(X)\leq 4$ for all values of $p$; this is proved by a new approach.
Keywords: Borsuk's partition problem, Minkowski space, covering, $K^{n}_{p}$, $\ell_{p}$ norm.
Funding agency Grant number
National Natural Science Foundation of China 11801410
This work was supported by the National Natural Science Foundation of China (no. 11801410).
Received: 25.11.2020
Revised: 23.04.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 2, Pages 289–296
DOI: https://doi.org/10.1134/S0001434622010321
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jun Wang, Yuqin Zhang, “Borsuk's Partition Problem in $(\mathbb{R}^{n},\ell_{p})$”, Math. Notes, 111:2 (2022), 289–296
Citation in format AMSBIB
\Bibitem{JunZha22}
\by Jun~Wang, Yuqin~Zhang
\paper Borsuk's Partition Problem in
$(\mathbb{R}^{n},\ell_{p})$
\jour Math. Notes
\yr 2022
\vol 111
\issue 2
\pages 289--296
\mathnet{http://mi.mathnet.ru/mzm12966}
\crossref{https://doi.org/10.1134/S0001434622010321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4392537}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760397500032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85125441974}
Linking options:
  • https://www.mathnet.ru/eng/mzm12966
    Erratum
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024