|
This article is cited in 5 scientific papers (total in 5 papers)
On a class of $N$-dimensional trigonometric series
O. I. Kuznetsova Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
Abstract:
An analog of Fomin's well-known one-dimensional theorem is proved for trigonometric series of the form
$$
\lambda_0+\sum_{l=1}^\infty\lambda_l\sum_{k\in lV\setminus(l-1)V}e^{ikx},
\qquad \lambda_l\to0 \quad\text{as}\quad l\to\infty,
$$
given on an $N$-dimensional torus, where $V$ is some polyhedron in $\mathbb R^N$.
Received: 03.12.1996
Citation:
O. I. Kuznetsova, “On a class of $N$-dimensional trigonometric series”, Mat. Zametki, 63:3 (1998), 402–406; Math. Notes, 63:3 (1998), 352–356
Linking options:
https://www.mathnet.ru/eng/mzm1295https://doi.org/10.4213/mzm1295 https://www.mathnet.ru/eng/mzm/v63/i3/p402
|
Statistics & downloads: |
Abstract page: | 357 | Full-text PDF : | 200 | References: | 43 | First page: | 2 |
|