Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 6, Pages 872–883
DOI: https://doi.org/10.4213/mzm12942
(Mi mzm12942)
 

This article is cited in 1 scientific paper (total in 1 paper)

Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings

O. V. Ljubimtsev

National Research Lobachevsky State University of Nizhny Novgorod
Full-text PDF (521 kB) Citations (1)
References:
Abstract: For an Abelian group $A$, viewed as a module over its endomorphism ring $E(A)$, the near-ring $\mathcal{M}_{E(A)}(A)$ of homogeneous mappings is defined as the set of mappings $\{f\colon A\to A \mid f(\varphi a)=\varphi f(a)$ for all $\varphi\in E(A)$ and $a\in A\}$ with the operations of addition and composition (as multiplication). It is proved that the problem of describing some classes of mixed Abelian groups with the property $\mathcal{M}_{E(A)}(A)=E(A)$ reduces to the cause of torsion-free Abelian groups. Abelian groups with this property are found in the class of strongly indecomposable torsion-free Abelian groups of finite rank and torsion-free Abelian groups of finite rank coinciding with their pseudosocle.
Keywords: Abelian group, endomorphic module.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0729-2020-0055
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 0729-2020-0055).
Received: 25.01.2021
Revised: 30.01.2021
English version:
Mathematical Notes, 2021, Volume 109, Issue 6, Pages 909–917
DOI: https://doi.org/10.1134/S0001434621050242
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: O. V. Ljubimtsev, “Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings”, Mat. Zametki, 109:6 (2021), 872–883; Math. Notes, 109:6 (2021), 909–917
Citation in format AMSBIB
\Bibitem{Lju21}
\by O.~V.~Ljubimtsev
\paper Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 6
\pages 872--883
\mathnet{http://mi.mathnet.ru/mzm12942}
\crossref{https://doi.org/10.4213/mzm12942}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 6
\pages 909--917
\crossref{https://doi.org/10.1134/S0001434621050242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513000024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85125107509}
Linking options:
  • https://www.mathnet.ru/eng/mzm12942
  • https://doi.org/10.4213/mzm12942
  • https://www.mathnet.ru/eng/mzm/v109/i6/p872
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :33
    References:33
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024