Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 6, Pages 869–872
DOI: https://doi.org/10.4213/mzm12911
(Mi mzm12911)
 

This article is cited in 1 scientific paper (total in 1 paper)

A Note on Shen's Conjecture on Groups with Given Same-Order Type

P. Kumar

Central Institute of Petrochemicals Engineering & Technology
Full-text PDF (418 kB) Citations (1)
References:
Abstract: Let $G$ be a group. Define an equivalence relation $\sim$ on $G$ as follows: for $x,y \in G$, $x \sim y$ if $x$ and $y$ have same order. The set of sizes of equivalence classes with respect to this relation is called the same-order type of $G$. Let $s_{k}(G)$ and $\pi_{e}(G)$ denote the number of elements of order $k$ and the set of element orders of the finite group $G$, respectively. Shen (2012) posed the following conjecture: let $G$ be a group of order $p^{l}$ with same-order type $\{1,m,n\}$, and let $|\pi_{e}(G)|>3$. If $p=2$ and $s_{2^{i}}(G)\neq0$ for $i\ge2$, then $s_{2^{i}}(G)=2^{l-2}$. If $p>2$, then there is no such group. In this paper, we give a partial answer to this conjecture. In fact, for $p=2$ with a counterexample, we give negative answer to the above conjecture, and for $p>2$, we find that above conjecture holds for finite $p$-groups of nilpotency class less than $p$.
Keywords: element order, $p$-group, same-order type.
Received: 21.09.2020
Revised: 15.01.2022
English version:
Mathematical Notes, 2022, Volume 111, Issue 6, Pages 899–902
DOI: https://doi.org/10.1134/S0001434622050236
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: P. Kumar, “A Note on Shen's Conjecture on Groups with Given Same-Order Type”, Mat. Zametki, 111:6 (2022), 869–872; Math. Notes, 111:6 (2022), 899–902
Citation in format AMSBIB
\Bibitem{Kum22}
\by P.~Kumar
\paper A Note on Shen's Conjecture on Groups with Given Same-Order Type
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 6
\pages 869--872
\mathnet{http://mi.mathnet.ru/mzm12911}
\crossref{https://doi.org/10.4213/mzm12911}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4439548}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 6
\pages 899--902
\crossref{https://doi.org/10.1134/S0001434622050236}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132842988}
Linking options:
  • https://www.mathnet.ru/eng/mzm12911
  • https://doi.org/10.4213/mzm12911
  • https://www.mathnet.ru/eng/mzm/v111/i6/p869
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :19
    References:57
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024