Abstract:
We give more detail to our examples in [1] of K3 surfaces over
$\mathbb C$ which have an infinite automorphism group that preserves some elliptic pencil of the K3 surface.
Citation:
Viacheslav V. Nikulin, “Some Examples of K3 Surfaces with Infinite Automorphism Group which Preserves an
Elliptic Pencil”, Math. Notes, 108:4 (2020), 542–549
\Bibitem{Nik20}
\by Viacheslav~V.~Nikulin
\paper Some Examples of K3 Surfaces with Infinite Automorphism Group which Preserves an
Elliptic Pencil
\jour Math. Notes
\yr 2020
\vol 108
\issue 4
\pages 542--549
\mathnet{http://mi.mathnet.ru/mzm12907}
\crossref{https://doi.org/10.1134/S0001434620090266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4170906}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000584617700026}
\elib{https://elibrary.ru/item.asp?id=45227462}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094150274}
Linking options:
https://www.mathnet.ru/eng/mzm12907
This publication is cited in the following 3 articles:
Gilberto Bini, Robert Laterveer, “Zero-cycles and the Cayley–Oguiso automorphism”, Ann Univ Ferrara, 2024
Xun Yu, “K3 surface entropy and automorphism groups”, J. Algebraic Geom., 2024
Viacheslav V. Nikulin, “Some Examples of K3 Surfaces with Infinite Automorphism Group which Preserves an
Elliptic Pencil”, Math. Notes, 108:4 (2020), 542–549