Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 4, Pages 601–616
DOI: https://doi.org/10.4213/mzm12873
(Mi mzm12873)
 

Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface

A. V. Tsvetkovaa, A. I. Shafarevichabcd

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
c National Research Centre "Kurchatov Institute", Moscow
d Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: A variable-velocity wave equation is studied on the simplest decorated graph, i.e., the topological space obtained by attaching a ray to $\mathbb R^3$. The Cauchy problem with initial conditions localized on Euclidean space is considered. The leading term of an asymptotic solution of the problem under consideration as the parameter characterizing the size of the source tends to zero is described by using the construction of the Maslov canonical operator. It is assumed that the point on $\mathbb R^3$ at which the ray is attached is not a singular point of the wavefront.
Keywords: wave equation, Cauchy problem, variable velocity, decorated graph, hybrid manifold.
Funding agency Grant number
Russian Science Foundation 16-11-10069
This work was supported by the Russian Science Foundation under grant 16-11-10069.
Received: 22.04.2019
English version:
Mathematical Notes, 2020, Volume 108, Issue 4, Pages 590–602
DOI: https://doi.org/10.1134/S000143462009031X
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: A. V. Tsvetkova, A. I. Shafarevich, “Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface”, Mat. Zametki, 108:4 (2020), 601–616; Math. Notes, 108:4 (2020), 590–602
Citation in format AMSBIB
\Bibitem{TsvSha20}
\by A.~V.~Tsvetkova, A.~I.~Shafarevich
\paper Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 4
\pages 601--616
\mathnet{http://mi.mathnet.ru/mzm12873}
\crossref{https://doi.org/10.4213/mzm12873}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153691}
\elib{https://elibrary.ru/item.asp?id=45195093}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 4
\pages 590--602
\crossref{https://doi.org/10.1134/S000143462009031X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000584617700031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094152050}
Linking options:
  • https://www.mathnet.ru/eng/mzm12873
  • https://doi.org/10.4213/mzm12873
  • https://www.mathnet.ru/eng/mzm/v108/i4/p601
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :65
    References:35
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024