Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 3, paper published in the English version journal (Mi mzm12844)  

This article is cited in 8 scientific papers (total in 8 papers)

Papers published in the English version of the journal

Direct and Inverse Problems for the Matrix Sturm–Liouville Operator with General Self-Adjoint Boundary Conditions

N. P. Bondarenkoab

a Department of Applied Mathematics and Physics, Samara National Research University, Samara, 443086 Russia
b Department of Mechanics and Mathematics, Saratov State University, Saratov, 410012 Russia
Citations (8)
Abstract: The matrix Sturm–Liouville operator on a finite interval with boundary conditions in the general self-adjoint form and with singular potential of class $W_2^{-1}$ is studied. This operator generalizes Sturm–Liouville operators on geometrical graphs. We investigate structural and asymptotical properties of the spectral data (eigenvalues and weight matrices) of this operator. Furthermore, we prove the uniqueness of recovering the operator from its spectral data, by using the method of spectral mappings.
Keywords: matrix Sturm–Liouville operator, singular potential, Sturm–Liouville operators on graphs, eigenvalue asymptotics, Riesz-basicity of eigenfunctions, inverse problem, uniqueness theorem.
Funding agency Grant number
Russian Science Foundation 19-71-00009
This work was supported by the Russian Science Foundation under grant 19-71-00009.
Received: 18.07.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 3, Pages 358–378
DOI: https://doi.org/10.1134/S0001434621030044
Bibliographic databases:
Document Type: Article
Language: English
Citation: N. P. Bondarenko, “Direct and Inverse Problems for the Matrix Sturm–Liouville Operator with General Self-Adjoint Boundary Conditions”, Math. Notes, 109:3 (2021), 358–378
Citation in format AMSBIB
\Bibitem{Bon21}
\by N.~P.~Bondarenko
\paper Direct and Inverse Problems for the Matrix Sturm--Liouville
Operator with General Self-Adjoint Boundary Conditions
\jour Math. Notes
\yr 2021
\vol 109
\issue 3
\pages 358--378
\mathnet{http://mi.mathnet.ru/mzm12844}
\crossref{https://doi.org/10.1134/S0001434621030044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3904762}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513100004}
\elib{https://elibrary.ru/item.asp?id=46932877}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109743934}
Linking options:
  • https://www.mathnet.ru/eng/mzm12844
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024