Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 3, Pages 397–406
DOI: https://doi.org/10.4213/mzm12835
(Mi mzm12835)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes

S. F. Lukomskii

Saratov State University
Full-text PDF (494 kB) Citations (1)
References:
Abstract: Let $G^d$ be a power of the Cantor binary group $G$. The uniqueness problem for a multiple Walsh series on a power of the binary group in the case of convergence in cubes is discussed. It is proved that if $x\in G^{d-1}$, then $G\times \{x\}$ is the uniqueness set of a $d$-dimensional Walsh series in the case of convergence in cubes.
Keywords: multiple Walsh series, convergence in cubes, uniqueness set.
Funding agency Grant number
НОЦ «Математика технологий будущего»
This work was carried out with the financial support of the REC “Mathematics of the technologies of the future.”
Received: 14.07.2020
Revised: 26.10.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 3, Pages 427–434
DOI: https://doi.org/10.1134/S000143462103010X
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: S. F. Lukomskii, “On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes”, Mat. Zametki, 109:3 (2021), 397–406; Math. Notes, 109:3 (2021), 427–434
Citation in format AMSBIB
\Bibitem{Luk21}
\by S.~F.~Lukomskii
\paper On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 3
\pages 397--406
\mathnet{http://mi.mathnet.ru/mzm12835}
\crossref{https://doi.org/10.4213/mzm12835}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223927}
\elib{https://elibrary.ru/item.asp?id=46947940}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 3
\pages 427--434
\crossref{https://doi.org/10.1134/S000143462103010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113150062}
Linking options:
  • https://www.mathnet.ru/eng/mzm12835
  • https://doi.org/10.4213/mzm12835
  • https://www.mathnet.ru/eng/mzm/v109/i3/p397
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :40
    References:35
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024