|
On Zeros of Sums of Cosines
S. V. Konyagin Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Abstract:
It is shown that there exist arbitrarily large natural numbers $N$ and distinct nonnegative integers $n_1,\dots,n_N$ for which the number of zeros on $[-\pi,\pi)$ of the trigonometric polynomial $\sum_{j=1}^N \cos(n_j t)$ is $O(N^{2/3}\log^{2/3} N)$.
Keywords:
trigonometric polynomials, Dirichlet kernel.
Received: 29.04.2020
Citation:
S. V. Konyagin, “On Zeros of Sums of Cosines”, Mat. Zametki, 108:4 (2020), 547–551; Math. Notes, 108:4 (2020), 538–541
Linking options:
https://www.mathnet.ru/eng/mzm12828https://doi.org/10.4213/mzm12828 https://www.mathnet.ru/eng/mzm/v108/i4/p547
|
Statistics & downloads: |
Abstract page: | 355 | Full-text PDF : | 56 | References: | 60 | First page: | 46 |
|