Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 4, Pages 547–551
DOI: https://doi.org/10.4213/mzm12828
(Mi mzm12828)
 

On Zeros of Sums of Cosines

S. V. Konyagin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: It is shown that there exist arbitrarily large natural numbers $N$ and distinct nonnegative integers $n_1,\dots,n_N$ for which the number of zeros on $[-\pi,\pi)$ of the trigonometric polynomial $\sum_{j=1}^N \cos(n_j t)$  is  $O(N^{2/3}\log^{2/3} N)$.
Keywords: trigonometric polynomials, Dirichlet kernel.
Received: 29.04.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 4, Pages 538–541
DOI: https://doi.org/10.1134/S0001434620090254
Bibliographic databases:
Document Type: Article
UDC: 517.518.4
Language: Russian
Citation: S. V. Konyagin, “On Zeros of Sums of Cosines”, Mat. Zametki, 108:4 (2020), 547–551; Math. Notes, 108:4 (2020), 538–541
Citation in format AMSBIB
\Bibitem{Kon20}
\by S.~V.~Konyagin
\paper On Zeros of Sums of Cosines
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 4
\pages 547--551
\mathnet{http://mi.mathnet.ru/mzm12828}
\crossref{https://doi.org/10.4213/mzm12828}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153686}
\elib{https://elibrary.ru/item.asp?id=45190262}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 4
\pages 538--541
\crossref{https://doi.org/10.1134/S0001434620090254}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000584617700025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094209646}
Linking options:
  • https://www.mathnet.ru/eng/mzm12828
  • https://doi.org/10.4213/mzm12828
  • https://www.mathnet.ru/eng/mzm/v108/i4/p547
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024