Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 3, Pages 419–435
DOI: https://doi.org/10.4213/mzm12802
(Mi mzm12802)
 

This article is cited in 2 scientific papers (total in 2 papers)

Formula Complexity of a Linear Function in a $k$-ary Basis

I. S. Sergeev

Research Institute "Kvant", Moscow
Full-text PDF (604 kB) Citations (2)
References:
Abstract: A way of extending the Khrapchenko method of finding a lower bound for the complexity of binary formulas to formulas in $k$-ary bases is proposed. The resulting extension makes it possible to evaluate the complexity of a linear Boolean function and a majority function of $n$ variables when realized by formulas in the basis of all $k$-ary monotone functions and negation as $\Omega(n^{g(k)})$, where $g (k)=1+\Theta(1/\ln k)$. For a linear function, the complexity bound in this form is unimprovable. For $k=3$, the sharper lower bound $\Omega(n^{1.53})$ is proved.
Keywords: Boolean formulas, linear function, majority function, Khrapchenko method, bipartite graphs, lower bounds for complexity.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00294а
This work was supported by the Russian Foundation for Basic Research under grant 19-01-00294a.
Received: 28.05.2020
Revised: 23.09.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 3, Pages 445–458
DOI: https://doi.org/10.1134/S0001434621030123
Bibliographic databases:
Document Type: Article
UDC: 519.714+519.1
Language: Russian
Citation: I. S. Sergeev, “Formula Complexity of a Linear Function in a $k$-ary Basis”, Mat. Zametki, 109:3 (2021), 419–435; Math. Notes, 109:3 (2021), 445–458
Citation in format AMSBIB
\Bibitem{Ser21}
\by I.~S.~Sergeev
\paper Formula Complexity of a Linear Function in a $k$-ary Basis
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 3
\pages 419--435
\mathnet{http://mi.mathnet.ru/mzm12802}
\crossref{https://doi.org/10.4213/mzm12802}
\elib{https://elibrary.ru/item.asp?id=46932807}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 3
\pages 445--458
\crossref{https://doi.org/10.1134/S0001434621030123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109735244}
Linking options:
  • https://www.mathnet.ru/eng/mzm12802
  • https://doi.org/10.4213/mzm12802
  • https://www.mathnet.ru/eng/mzm/v109/i3/p419
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024