Abstract:
Let
Fq
be a finite field, and let
Fq[X]
be the ring of polynomials with
coefficients in Fq.
A 2-Pisot element is a pair of algebraic integers of
formal Laurent series over
Fq[X]
with absolute value strictly greater than
1
and such that all remaining conjugates have an
absolute value strictly smaller
than
1.
Our paper is devoted to characterize 2-Pisot elements in the case
q≠2r.
Citation:
M. Ben Nasr, H. Kthiri, “Characterization of 2-Pisot Elements in the Field
of Laurent Series over a Finite Field”, Math. Notes, 107:4 (2020), 552–558
\Bibitem{BenKth20}
\by M.~Ben Nasr, H.~Kthiri
\paper Characterization of 2-Pisot Elements in the Field
of Laurent Series over a Finite Field
\jour Math. Notes
\yr 2020
\vol 107
\issue 4
\pages 552--558
\mathnet{http://mi.mathnet.ru/mzm12775}
\crossref{https://doi.org/10.1134/S0001434620030220}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4147754}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083783065}
Linking options:
https://www.mathnet.ru/eng/mzm12775
This publication is cited in the following 2 articles:
H. Kthiri, “The smallest 2-Pisot numbers in Fq((X−1)) where q is different from the power of 2”, Taiwanese J. Math., 27:5 (2023)
M. B. Nasr, H. Kthiri, “On algebraic integers which are 2-Salem elements in positive characteristic”, Int. J. Number Theory, 18:07 (2022), 1637