Abstract:
For any given positive integers
mm
and
nn,
let
¯pm(n)¯¯¯pm(n)
denote the number of overpartitions of
nn
with no parts divisible by
4m4m
and only the parts congruent to
mm
modulo
2m2m
overlined.
In this paper, we prove Ramanujan-type congruences modulo 2 for
¯pm(n)¯¯¯pm(n)
by applying
qq-series and Ramanujan's theta-function identities.
Keywords:
congruences, partitions,
generating functions, overpartitions with restriction,
theta-function identities.
\Bibitem{SriSai20}
\by H.~M.~Srivastava, N.~Saikia
\paper Some Congruences for Overpartitions with Restriction
\jour Math. Notes
\yr 2020
\vol 107
\issue 3
\pages 488--498
\mathnet{http://mi.mathnet.ru/mzm12773}
\crossref{https://doi.org/10.1134/S0001434620030128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4147751}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700012}
\elib{https://elibrary.ru/item.asp?id=43272503}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083808561}
Linking options:
https://www.mathnet.ru/eng/mzm12773
This publication is cited in the following 5 articles:
R Raksha, H. M. Srivastava, U. Sayinath, K. Srivatsa, “New proofs of some Dedekind ηη-function identities of level 66”, Filomat, 37:12 (2023), 3755
H. M. Srivastava, M. P. Chaudhary, S. Chaudhary, G. A. Salilew, “Jacobi's Triple-Product Identity and an Associated Family of Theta-Function Identities”, Math. Notes, 112:5 (2022), 755–762
H. M. Srivastava, B. R. S. Kumar, R. Narendra, “Some modular equations analogous to Ramanujan's identities”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 115:2 (2021), 59
E. Shahi, H. Refaghat, Ya. Marefat, “Kostant partition function for sl(4)(c) and sp(6)(c)”, Cogent Math. Stat., 8 (2021)
Srivastava H.M., Srivastava R., Chaudhary M.P., Uddin S., “A Family of Theta-Function Identities Based Upon Combinatorial Partition Identities Related to Jacobi'S Triple-Product Identity”, Mathematics, 8:6 (2020), 918