Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 3, Pages 338–351
DOI: https://doi.org/10.4213/mzm12771
(Mi mzm12771)
 

This article is cited in 2 scientific papers (total in 2 papers)

Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws

Ya. I. Belopol'skaya

St. Petersburg State University of Architecture and Civil Engineering
Full-text PDF (489 kB) Citations (2)
References:
Abstract: Systems of nonlinear parabolic equations with small parameter multiplying the highest derivative and stochastic models associated with them are considered. It is shown that the vanishing viscosity method, which makes it possible to choose physical solutions to the Cauchy problem for systems of nonlinear conservation laws, has a natural justification in terms of stochastic models. A similar result for balance laws is also obtained.
Keywords: parabolic and hyperbolic conservation and balance laws, stochastic equations, small parameter.
Received: 28.04.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 3, Pages 347–357
DOI: https://doi.org/10.1134/S0001434621030032
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Ya. I. Belopol'skaya, “Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws”, Mat. Zametki, 109:3 (2021), 338–351; Math. Notes, 109:3 (2021), 347–357
Citation in format AMSBIB
\Bibitem{Bel21}
\by Ya.~I.~Belopol'skaya
\paper Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 3
\pages 338--351
\mathnet{http://mi.mathnet.ru/mzm12771}
\crossref{https://doi.org/10.4213/mzm12771}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 3
\pages 347--357
\crossref{https://doi.org/10.1134/S0001434621030032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513100003}
Linking options:
  • https://www.mathnet.ru/eng/mzm12771
  • https://doi.org/10.4213/mzm12771
  • https://www.mathnet.ru/eng/mzm/v109/i3/p338
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024