Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 110, Issue 1, Pages 99–109
DOI: https://doi.org/10.4213/mzm12761
(Mi mzm12761)
 

This article is cited in 2 scientific papers (total in 2 papers)

A Theorem of Sylvester–Gallai Type for Abelian Groups

F. K. Nilova, A. A. Polyanskiibcd

a Lomonosov Moscow State University
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
d Caucasus Mathematical Center, Adyghe State University, Maikop
Full-text PDF (518 kB) Citations (2)
References:
Abstract: A finite subset $X$ of an Abelian group $A$ with respect to addition is called a Sylvester–Gallai set of type $m$ if $|X|\ge m$ and, for every distinct $x_1,\dots,x_{m-1} \in X$, there is an element $x_m \in X \setminus \{x_1,\dots,x_{m-1}\}$ such that
$$ x_1+\dots+x_m=o_A, $$
where $o_A$ stands for the zero of the group $A$. We describe all Sylvester–Gallai sets of type $m$. As a consequence, we obtain the following result: if $Y$is a finite set of points on an elliptic curve in $\mathbb P^2(\mathbb C)$ and
(A) if, for every two distinct points $x_1,x_2 \in Y$, there is a point $x_3 \in Y \setminus \{x_1,x_2\}$ collinear to $x_1$ and $x_2$, then either $Y$ is a Hesse configuration of an elliptic curve or $Y$ consists of three points lying on the same line;
(B) if, for every five distinct points $x_1,\dots,x_5 \in Y$, there is a point $x_6 \in Y \setminus \{x_1,\dots,x_{5}\}$ such that $x_1,\dots,x_6$ lie on the same conic, then $Y$ consists of six points lying on the same conic.
Keywords: Sylvester–Gallai theorem, configurations of points and lines, configurations of points and conics, elliptic curves.
Funding agency Grant number
Dynasty Foundation
Russian Foundation for Basic Research 18-31-00149 мол_а
Ministry of Education and Science of the Russian Federation 075-15-2019-1926
Foundation for the Development of Theoretical Physics and Mathematics BASIS
The research of the first author was carried out under the financial support of the foundation “Dynasty.” The research of the other author was carried out under the financial support of the Russian Foundation for Basic Research within the framework of the scientific grant no. 18-31-00149 mol_a (Theorems 1 and 3 (case $m=3$)) and, within the framework of the project “Combinatorics, Computational Geometry and Analysis of Complex Structures,” it was carried out under the financial support of a grant of the Government of the Russian Federation for the State Support of Scientific Research Conducted under the Guidance of Leading Scientists, agreement no. 075-15-2019-1926 (Theorems 2 and 3 (case $m\ge4$)).
Received: 20.04.2020
Revised: 03.03.2021
English version:
Mathematical Notes, 2021, Volume 110, Issue 1, Pages 110–117
DOI: https://doi.org/10.1134/S0001434621070117
Bibliographic databases:
Document Type: Article
UDC: 519.1+514
Language: Russian
Citation: F. K. Nilov, A. A. Polyanskii, “A Theorem of Sylvester–Gallai Type for Abelian Groups”, Mat. Zametki, 110:1 (2021), 99–109; Math. Notes, 110:1 (2021), 110–117
Citation in format AMSBIB
\Bibitem{NilPol21}
\by F.~K.~Nilov, A.~A.~Polyanskii
\paper A Theorem of Sylvester--Gallai Type for Abelian Groups
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 1
\pages 99--109
\mathnet{http://mi.mathnet.ru/mzm12761}
\crossref{https://doi.org/10.4213/mzm12761}
\elib{https://elibrary.ru/item.asp?id=46969504}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 1
\pages 110--117
\crossref{https://doi.org/10.1134/S0001434621070117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000687705200011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113806912}
Linking options:
  • https://www.mathnet.ru/eng/mzm12761
  • https://doi.org/10.4213/mzm12761
  • https://www.mathnet.ru/eng/mzm/v110/i1/p99
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :88
    References:40
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024