Abstract:
In the paper, we consider the problem of uniform approximation of a continuous function defined on a compact metric space X by elements of the sum of two algebras in the space of all continuous functions on X. We prove a Chebyshev-type theorem for characterization of best approximation.
Keywords:
function algebra, best approximation, lightning bolt, extremal lightning bolt.
Citation:
A. Kh. Askarova, V. È. Ismailov, “A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras”, Mat. Zametki, 109:1 (2021), 19–26; Math. Notes, 109:1 (2021), 15–20
\Bibitem{AskIsm21}
\by A.~Kh.~Askarova, V.~\`E.~Ismailov
\paper A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 1
\pages 19--26
\mathnet{http://mi.mathnet.ru/mzm12736}
\crossref{https://doi.org/10.4213/mzm12736}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 1
\pages 15--20
\crossref{https://doi.org/10.1134/S0001434621010028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670512900002}
Linking options:
https://www.mathnet.ru/eng/mzm12736
https://doi.org/10.4213/mzm12736
https://www.mathnet.ru/eng/mzm/v109/i1/p19
This publication is cited in the following 1 articles:
A. Kh. Asgarova, A. A. Huseynli, V. E. Ismailov, “A Chebyshev-type alternation theorem for best approximation by a sum of two algebras”, Proceedings of the Edinburgh Mathematical Society, 66:4, 971–978