Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 6, Pages 929–937
DOI: https://doi.org/10.4213/mzm12717
(Mi mzm12717)
 

This article is cited in 1 scientific paper (total in 1 paper)

Smooth Nonprojective Equivariant Completions of Affine Space

K. V. Shakhmatovab

a Lomonosov Moscow State University
b National Research University "Higher School of Economics", Moscow
Full-text PDF (472 kB) Citations (1)
References:
Abstract: An open translation-equivariant embedding of the affine space $\mathbb A^n$ into a complete nonprojective algebraic variety $X$ is constructed for any $n\ge 3$. The main tool is the theory of toric varieties. In the case $n=3$, the orbit structure of the obtained action on the variety $X$ is described.
Keywords: nonprojective variety, toric variety, additive action, completion.
Funding agency Grant number
Russian Science Foundation 19-11-00172
This work was supported by the Russian Science Foundation under grant 19-11-00172.
Received: 11.03.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 6, Pages 954–961
DOI: https://doi.org/10.1134/S0001434621050291
Bibliographic databases:
Document Type: Article
UDC: 512.745
Language: Russian
Citation: K. V. Shakhmatov, “Smooth Nonprojective Equivariant Completions of Affine Space”, Mat. Zametki, 109:6 (2021), 929–937; Math. Notes, 109:6 (2021), 954–961
Citation in format AMSBIB
\Bibitem{Sha21}
\by K.~V.~Shakhmatov
\paper Smooth Nonprojective Equivariant Completions of Affine Space
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 6
\pages 929--937
\mathnet{http://mi.mathnet.ru/mzm12717}
\crossref{https://doi.org/10.4213/mzm12717}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 6
\pages 954--961
\crossref{https://doi.org/10.1134/S0001434621050291}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513000029}
Linking options:
  • https://www.mathnet.ru/eng/mzm12717
  • https://doi.org/10.4213/mzm12717
  • https://www.mathnet.ru/eng/mzm/v109/i6/p929
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025