Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 4, Pages 581–589
DOI: https://doi.org/10.4213/mzm12703
(Mi mzm12703)
 

This article is cited in 1 scientific paper (total in 1 paper)

Conditions for Acts over Semilattices to be Cantor

I. B. Kozhukhovab, A. S. Sotovb

a National Research University of Electronic Technology
b Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (452 kB) Citations (1)
References:
Abstract: An algebra $A$ is said to be Cantor if a theorem similar to the Cantor–Bernstein–Schröder theorem holds for it; namely, if, for any algebra $B$, the existence of injective homomorphisms $A\to B$ and $B\to A$ implies the isomorphism $A\cong B$. Necessary and sufficient conditions for an act over a finite commutative semigroup of idempotents to be Cantor are obtained under the assumption that all connected components of this act are finite.
Keywords: act over a semigroup, semilattice, Cantor–Bernstein–Schröder theorem.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics
This work was supported in part by the Moscow Center of Fundamental and Applied Mathematics, Moscow State University (project “Structure theory and combinatorial-logic methods in the theory of algebraic systems.”)
Received: 26.02.2020
Revised: 16.01.2021
English version:
Mathematical Notes, 2021, Volume 109, Issue 4, Pages 593–599
DOI: https://doi.org/10.1134/S0001434621030287
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: I. B. Kozhukhov, A. S. Sotov, “Conditions for Acts over Semilattices to be Cantor”, Mat. Zametki, 109:4 (2021), 581–589; Math. Notes, 109:4 (2021), 593–599
Citation in format AMSBIB
\Bibitem{KozSot21}
\by I.~B.~Kozhukhov, A.~S.~Sotov
\paper Conditions for Acts over Semilattices to be Cantor
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 4
\pages 581--589
\mathnet{http://mi.mathnet.ru/mzm12703}
\crossref{https://doi.org/10.4213/mzm12703}
\elib{https://elibrary.ru/item.asp?id=46925415}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 4
\pages 593--599
\crossref{https://doi.org/10.1134/S0001434621030287}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513100028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109147274}
Linking options:
  • https://www.mathnet.ru/eng/mzm12703
  • https://doi.org/10.4213/mzm12703
  • https://www.mathnet.ru/eng/mzm/v109/i4/p581
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024