Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 5, Pages 643–656
DOI: https://doi.org/10.4213/mzm12694
(Mi mzm12694)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Disjointly Homogeneous Orlicz–Lorentz Spaces

S. V. Astashkin, S. I. Strakhov

Samara National Research University
Full-text PDF (549 kB) Citations (2)
References:
Abstract: A characterization of disjointly homogeneous Orlicz–Lorentz function spaces $\Lambda_{\varphi,w}$ is obtained. It is used to find necessary and sufficient conditions for an analog of the classical Dunford–Pettis theorem about the equi-integrability of weakly compact sets in $L_1$ to hold in the space $\Lambda_{\varphi,w}$. It is also shown that there exists an Orlicz function $\Phi$ with the upper Matuszewska–Orlicz index equal to $1$ for which such an analog in the space $\Lambda_{\Phi,w}$ does not hold. This answers a recent question of Leśnik, Maligranda, and Tomaszewski.
Keywords: Orlicz–Lorentz space, Orlicz space, Orlicz function, symmetric space, disjointly homogeneous space, weakly compact set, Matuszewska–Orlicz indices.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 1.470.2016/1.4
Russian Foundation for Basic Research 18-01-00414-а
The work of the first author was performed in the framework of a state assignment of the Ministry of Science and Higher Education of the Russian Federation (grant no. 1.470.2016/1.4) and supported in part by the Russian Foundation for Basic Research under grant 18-01-00414-a. The work of the second author was supported by the Russian Foundation for Basic Research under grant 18-01-00414-a.
Received: 12.02.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 5, Pages 631–642
DOI: https://doi.org/10.1134/S0001434620110012
Bibliographic databases:
Document Type: Article
UDC: 517.982.22
Language: Russian
Citation: S. V. Astashkin, S. I. Strakhov, “On Disjointly Homogeneous Orlicz–Lorentz Spaces”, Mat. Zametki, 108:5 (2020), 643–656; Math. Notes, 108:5 (2020), 631–642
Citation in format AMSBIB
\Bibitem{AstStr20}
\by S.~V.~Astashkin, S.~I.~Strakhov
\paper On Disjointly Homogeneous Orlicz--Lorentz Spaces
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 5
\pages 643--656
\mathnet{http://mi.mathnet.ru/mzm12694}
\crossref{https://doi.org/10.4213/mzm12694}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169692}
\elib{https://elibrary.ru/item.asp?id=46682848}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 5
\pages 631--642
\crossref{https://doi.org/10.1134/S0001434620110012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000599343700001}
\elib{https://elibrary.ru/item.asp?id=45084673}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097551350}
Linking options:
  • https://www.mathnet.ru/eng/mzm12694
  • https://doi.org/10.4213/mzm12694
  • https://www.mathnet.ru/eng/mzm/v108/i5/p643
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:280
    Full-text PDF :52
    References:39
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024