Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 2, Pages 252–259
DOI: https://doi.org/10.4213/mzm12677
(Mi mzm12677)
 

A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property

O. I. Reinov

Saint Petersburg State University
References:
Abstract: The first example of a Banach space with the approximation property but without the bounded approximation property was given by Figiel and Johnson in 1973. We give the first example of a Banach lattice with the approximation property but without the bounded approximation property. As a consequence, we prove the existence of an integral operator (in the sense of Grothendieck) on a Banach lattice which is not strictly integral.
Keywords: Banach lattice, basis, approximation property, bounded approximation property.
Received: 16.01.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 2, Pages 243–249
DOI: https://doi.org/10.1134/S0001434620070251
Bibliographic databases:
Document Type: Article
UDC: 517.983.27
Language: Russian
Citation: O. I. Reinov, “A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property”, Mat. Zametki, 108:2 (2020), 252–259; Math. Notes, 108:2 (2020), 243–249
Citation in format AMSBIB
\Bibitem{Rei20}
\by O.~I.~Reinov
\paper A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 2
\pages 252--259
\mathnet{http://mi.mathnet.ru/mzm12677}
\crossref{https://doi.org/10.4213/mzm12677}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133415}
\elib{https://elibrary.ru/item.asp?id=45388525}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 2
\pages 243--249
\crossref{https://doi.org/10.1134/S0001434620070251}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556090300025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088953415}
Linking options:
  • https://www.mathnet.ru/eng/mzm12677
  • https://doi.org/10.4213/mzm12677
  • https://www.mathnet.ru/eng/mzm/v108/i2/p252
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :34
    References:34
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024