Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 5, Pages 702–713
DOI: https://doi.org/10.4213/mzm12664
(Mi mzm12664)
 

This article is cited in 2 scientific papers (total in 2 papers)

Comparison Method for Studying Equations in Metric Spaces

E. S. Zhukovskiyab

a Tambov State University named after G.R. Derzhavin
b V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
Full-text PDF (511 kB) Citations (2)
References:
Abstract: We consider the equation $G(x,x)=y$, where $G\colon X\times X\to Y$ and $X$ and $Y$ are metric spaces. This operator equation is compared with the “model” equation $g(t,t)=0$, where the function $g\colon \mathbb{R}_+\times \mathbb{R}_+ \to\mathbb{R}$ is continuous, nondecreasing in the first argument, and nonincreasing in the second argument. Conditions are obtained under which the existence of solutions of this operator equation follows from the solvability of the “model” equation. Conditions for the stability of the solutions under small variations in the mapping $G$ are established. The statements proved in the present paper extend the Kantorovich fixed-point theorem for differentiable mappings of Banach spaces, as well as its generalizations to coincidence points of mappings of metric spaces.
Keywords: equation in metric space, existence of a solution, stability, coincidence point, fixed point.
Funding agency Grant number
Russian Science Foundation 20-11-20131
This work was supported by the Russian Science Foundation under grant 20-11-20131.
Received: 06.01.2020
Revised: 26.03.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 5, Pages 679–687
DOI: https://doi.org/10.1134/S0001434620110061
Bibliographic databases:
Document Type: Article
UDC: 517.988+515.126.4
Language: Russian
Citation: E. S. Zhukovskiy, “Comparison Method for Studying Equations in Metric Spaces”, Mat. Zametki, 108:5 (2020), 702–713; Math. Notes, 108:5 (2020), 679–687
Citation in format AMSBIB
\Bibitem{Zhu20}
\by E.~S.~Zhukovskiy
\paper Comparison Method for Studying Equations in Metric Spaces
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 5
\pages 702--713
\mathnet{http://mi.mathnet.ru/mzm12664}
\crossref{https://doi.org/10.4213/mzm12664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169697}
\elib{https://elibrary.ru/item.asp?id=45092871}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 5
\pages 679--687
\crossref{https://doi.org/10.1134/S0001434620110061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000599343700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097521147}
Linking options:
  • https://www.mathnet.ru/eng/mzm12664
  • https://doi.org/10.4213/mzm12664
  • https://www.mathnet.ru/eng/mzm/v108/i5/p702
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :69
    References:34
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024