Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 4, Pages 483–489
DOI: https://doi.org/10.4213/mzm12633
(Mi mzm12633)
 

This article is cited in 1 scientific paper (total in 1 paper)

Two-Sided Estimates of the $L^\infty$-Norm of the Sum of a Sine Series with Monotone Coefficients $\{b_k\}$ via the $\ell^\infty$-Norm of the Sequence $\{kb_k\}$

E. D. Alferovaab, A. Yu. Popovab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (428 kB) Citations (1)
References:
Abstract: We refine the classical boundedness criterion for sums of sine series with monotone coefficients $b_k$: the sum of a series is bounded on $\mathbb R$ if and only if the sequence $\{kb_k\}$ is bounded. We derive a two-sided estimate of the Chebyshev norm of the sum of a series via a special norm of the sequence $\{kb_k\}$. The resulting upper bound is sharp, and the constant in the lower bound differs from the exact value by at most $0.2$.
Keywords: two-sided estimate of a norm, sine series, monotone coefficients.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00584
The research of A. Yu. Popov was supported by the Russian Foundation for Basic Research under grant 20-01-00584.
Received: 13.12.2019
Revised: 23.04.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 4, Pages 471–476
DOI: https://doi.org/10.1134/S0001434620090199
Bibliographic databases:
Document Type: Article
UDC: 517.518.4
Language: Russian
Citation: E. D. Alferova, A. Yu. Popov, “Two-Sided Estimates of the $L^\infty$-Norm of the Sum of a Sine Series with Monotone Coefficients $\{b_k\}$ via the $\ell^\infty$-Norm of the Sequence $\{kb_k\}$”, Mat. Zametki, 108:4 (2020), 483–489; Math. Notes, 108:4 (2020), 471–476
Citation in format AMSBIB
\Bibitem{AlfPop20}
\by E.~D.~Alferova, A.~Yu.~Popov
\paper Two-Sided Estimates of the $L^\infty$-Norm of the Sum of a Sine Series with Monotone Coefficients~$\{b_k\}$ via the $\ell^\infty$-Norm of the Sequence~$\{kb_k\}$
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 4
\pages 483--489
\mathnet{http://mi.mathnet.ru/mzm12633}
\crossref{https://doi.org/10.4213/mzm12633}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153681}
\elib{https://elibrary.ru/item.asp?id=45193547}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 4
\pages 471--476
\crossref{https://doi.org/10.1134/S0001434620090199}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000584617700019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094135699}
Linking options:
  • https://www.mathnet.ru/eng/mzm12633
  • https://doi.org/10.4213/mzm12633
  • https://www.mathnet.ru/eng/mzm/v108/i4/p483
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :58
    References:51
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024