Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 5, Pages 714–724
DOI: https://doi.org/10.4213/mzm12630
(Mi mzm12630)
 

Extension of Functions from Isotropic Nikol'skii–Besov Spaces and Their Approximation together with Derivatives

S. N. Kudryavtsev

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
References:
Abstract: Isotropic Nikol'skii–Besov spaces with norms whose definition, instead of the modulus of continuity of certain order of partial derivatives of functions of fixed order, involves the "$L_p$-averaged" modulus of continuity of functions of the corresponding order are studied. We construct continuous linear mappings of such spaces of functions given on bounded domains of $(1,\dots,1)$-type (in the wide sense) to the usual isotropic Nikol'skii–Besov spaces on $\mathbb{R}^d$, which are extension operators of these functions; this implies the coincidence of these spaces on the domains mentioned above. It is established that any bounded domain in $\mathbb{R}^d$ with Lipschitz boundary is a domain of $(1,\dots,1)$-type (in the wide sense). We also establish the weak asymptotics of approximation characteristics related to the problem of the recovery of functions together with their derivatives from the values of these functions at a given number of points, to the Stechkin problem for the differentiation operator, and to the problem of describing the asymptotics of widths for isotropic classes of Nikol'skii and Besov in these domains.
Keywords: isotropic Nikol'skii–Besov spaces, extension of functions, equivalent norms, recovery of functions, approximation of an operator, width.
Received: 09.12.2019
Revised: 14.05.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 5, Pages 688–696
DOI: https://doi.org/10.1134/S0001434620110073
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. N. Kudryavtsev, “Extension of Functions from Isotropic Nikol'skii–Besov Spaces and Their Approximation together with Derivatives”, Mat. Zametki, 108:5 (2020), 714–724; Math. Notes, 108:5 (2020), 688–696
Citation in format AMSBIB
\Bibitem{Kud20}
\by S.~N.~Kudryavtsev
\paper Extension of Functions from Isotropic Nikol'skii--Besov Spaces and Their Approximation together with Derivatives
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 5
\pages 714--724
\mathnet{http://mi.mathnet.ru/mzm12630}
\crossref{https://doi.org/10.4213/mzm12630}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169698}
\elib{https://elibrary.ru/item.asp?id=45085575}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 5
\pages 688--696
\crossref{https://doi.org/10.1134/S0001434620110073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000599343700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097525990}
Linking options:
  • https://www.mathnet.ru/eng/mzm12630
  • https://doi.org/10.4213/mzm12630
  • https://www.mathnet.ru/eng/mzm/v108/i5/p714
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025