Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 110, Issue 1, Pages 65–74
DOI: https://doi.org/10.4213/mzm12606
(Mi mzm12606)
 

On Matrices Having $J_m(1)\oplus J_m(1)$ as the Cosquare

Kh. D. Ikramov

Lomonosov Moscow State University
References:
Abstract: If the cosquares of complex matrices $A$ and $B$ are similar and there is a unimodular number in the spectrum of the cosquares, then $A$ and $B$ are not necessarily congruent. Assume that such an eigenvalue $\lambda_0$ is unique. In this case, so far, one could verify the congruence of $A$ and $B$ by using a rational algorithm only in two situations: (1)the eigenvalue $\lambda_0$ is simple or semi-simple; (2)there is only one Jordan block associated with $\lambda_0$ in the Jordan form of the cosquares. We propose a rational algorithm for checking congruence in the case where two Jordan blocks of the same order are associated with $\lambda_0$.
Keywords: congruences, canonical form, cosquare, rational algorithm.
Received: 08.11.2019
Revised: 03.02.2021
English version:
Mathematical Notes, 2021, Volume 110, Issue 1, Pages 72–79
DOI: https://doi.org/10.1134/S0001434621070075
Bibliographic databases:
Document Type: Article
UDC: 512.647.2
Language: Russian
Citation: Kh. D. Ikramov, “On Matrices Having $J_m(1)\oplus J_m(1)$ as the Cosquare”, Mat. Zametki, 110:1 (2021), 65–74; Math. Notes, 110:1 (2021), 72–79
Citation in format AMSBIB
\Bibitem{Ikr21}
\by Kh.~D.~Ikramov
\paper On Matrices Having $J_m(1)\oplus J_m(1)$ as the Cosquare
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 1
\pages 65--74
\mathnet{http://mi.mathnet.ru/mzm12606}
\crossref{https://doi.org/10.4213/mzm12606}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 1
\pages 72--79
\crossref{https://doi.org/10.1134/S0001434621070075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000687705200007}
Linking options:
  • https://www.mathnet.ru/eng/mzm12606
  • https://doi.org/10.4213/mzm12606
  • https://www.mathnet.ru/eng/mzm/v110/i1/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :80
    References:39
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024