Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 1, Pages 106–111
DOI: https://doi.org/10.4213/mzm12605
(Mi mzm12605)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Lie Ideals and Automorphisms in Prime Rings

N. Rehman

Aligarh Muslim University
Full-text PDF (413 kB) Citations (1)
References:
Abstract: Let $R$ be a prime ring of characteristic different from $2$ with center $Z$ and extended centroid $C$, and let $L$ be a Lie ideal of $R$. Consider two nontrivial automorphisms $\alpha$ and $\beta$ of $R$ for which there exist integers $m,n\ge 1$ such that $\alpha(u)^n+\beta(u)^m=0$ for all $u\in L$. It is shown that, under these assumptions, either $L$ is central or $R\subseteq M_2(C)$ (where $M_2(C)$ is the ring of $2 \times 2$ matrices over $C$), $L$ is commutative, and $u^{2} \in Z$ for all $u \in L$. In particular, if $L = [R,R]$, then $R$ is commutative.
Keywords: prime ring, Lie ideal, automorphism.
Received: 14.02.2018
English version:
Mathematical Notes, 2020, Volume 107, Issue 1, Pages 140–144
DOI: https://doi.org/10.1134/S0001434620010137
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: N. Rehman, “On Lie Ideals and Automorphisms in Prime Rings”, Mat. Zametki, 107:1 (2020), 106–111; Math. Notes, 107:1 (2020), 140–144
Citation in format AMSBIB
\Bibitem{Reh20}
\by N.~Rehman
\paper On Lie Ideals and Automorphisms in Prime Rings
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 1
\pages 106--111
\mathnet{http://mi.mathnet.ru/mzm12605}
\crossref{https://doi.org/10.4213/mzm12605}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045690}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 1
\pages 140--144
\crossref{https://doi.org/10.1134/S0001434620010137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519555100013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85081040778}
Linking options:
  • https://www.mathnet.ru/eng/mzm12605
  • https://doi.org/10.4213/mzm12605
  • https://www.mathnet.ru/eng/mzm/v107/i1/p106
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :36
    References:33
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024